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Preface

In my thesis I will generalize a previous result of M. Maehara. In ”Distances
in a rigid unit-distance graph in the plane”1 he proved that the distances
that occur between vertices in planar rigid unit-distance graphs are precisely
the positive real algebraic numbers. A unit-distance graph is a framework of
equal length bars which are connected in a flexible way at their endpoints.
Such a framework is called rigid if it cannot be deformed without changing
the length of the bars. There is also a stronger notion of rigidity which is
called infinitesimal rigidity. This stronger notion asks that it the framework
cannot even be deformed infinitesimally without an infinitesimal of change
length’s of the bars. The picture on this page shows an example of a rigid
framework which is rigid but not infinitesimally rigid. The point with the
arrows, cannot really move relative to the rest of the construction, although
you can do this infinitesimally in the direction indicated by the arrows.

A yet unanswered question was whether Maehara’s result also holds for in-
finitesimal frameworks. And it turned out to be true even with this stronger
notion of rigidity. I will prove this in my thesis by showing that Maehara’s
construction is infinitesimally rigid in the most cases and give a different
construction for the cases where Maehara’s construction isn’t infinitesimally
rigid.

1Discrete Applied Mathematics Volume 31, Issue 2, 15 April 1991, Pages 193-200
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1 Definitions and Conventions

In this thesis we assume that the graphs are always finite and simple. We
define a morphism between two graphs to be a map between the vertex sets
that sends adjacent points either to adjacent points or to the same point.
For graphs (V,E) we view the edge set E as a subset of {S ⊂ V |#S = 2}.
Whenever f : V 7→ X is any function defined on V we sometimes also view
f as a function on E, sending {v1, v2} to {f(v1), f(v2)}.

For frameworks we take the following definition:

Definition 1.1. A n-dimensional framework is an ordered triple (G, f,Rn)
where G = (V,E) is a graph and f : V → Rn a map which is called a
realization of the graph G.

A morphism between two n-dimensional frameworks (G, f,Rn) and (G′, f ′,Rn)
is a tuple (g, h) where g : G→ G′ is a graph morphism and h is an isometry
of Rn such that h ◦ f = f ′ ◦ g.

Both graphs and frameworks form a category with the mentioned mor-
phisms. In both categories the fibred sum always exists. People not familiar
with category’s should see the following propositions as definitions of the
fibred sum.

The fibred sum, sometimes called gluing, of two graphs can be more
explicitly given. The goal of this thesis is not to handle theory about graphs
and frameworks in detail so we state without proof.

Proposition 1.2. Let G1 = (V1, E1), G2 = (V2, E2) and G3 = (V3, E3) be
graphs and g1 : G3 → G1 and g2 : G3 → G2 be two graph morphisms. Then
G1

∐
G3
G2 given by

G1

∐
G3

G2 = (V1

∐
V3

V2, {e ∈ ι1(E1) ∪ ι2(E2)|#e = 2}) (1)

satisfies the universal property of the fibred sum. Here V1

∐
V3
V2 is the usual

fibred sum of sets and ι1 and ι2 are the two maps which come with this fibered
sum. Furthermore ι1 and ι2 are also the graph morphisms which come with
this fibred sum of graphs.

In my thesis g1 and g2 will always be injective. And in this case ι1 and ι2
will be injective also. And we will view G1 and G2 as subgraphs of G.

The same can be done for frameworks.

Proposition 1.3. Let the definition of variables be the same as in the previ-
ous proposition. And let furthermore F1 = (G1, f1,Rn), F2 = (G2, f2,Rn) and
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F3 = (G3, f3,Rn) be frameworks and (g1, h1) : F3 → F1 and (g2, h2) : F3 → F2

be two framework morphisms.
Then there is a unique map f = h−1

1 ◦ f1

∐
h−1

2 ◦ f2 : V → Rn which
makes the following diagram commute.

V3 V1

V2 V

Rn

g1

g2 ι1

ι2
h−1

1 ◦ f1

h−1
2 ◦ f2

f

Also F1

∐
F3
F2 given by

F1

∐
F3

F2 = (G1

∐
G3

G2, f,Rn) (2)

satisfies the universal property of the fibred sum. The framework morphisms
from F1 and F2 to F1

∐
F3
F2 are (ι1, h

−1
1 ) and (ι2, h

−1
2 )

We also define two quite similar functions for every framework. The
distance and the length function.

Definition 1.4. Let G = (V,E) be a graph and (G, f,Rn) be a framework
then the distance function df is given by:

df : V × V → R (3)

(v1, v2) 7→ |f(v1)− f(v2)|

Where | · | is the standard norm on Rn. It’s called the distance function
because df (v1, v2) is the distance between f(v1) and f(v2) And the length
function lf is given by:

lf : E → R (4)

{v1, v2} 7→ |f(v1)− f(v2)|

Note that for an edge e the value lf (e) is just the length of the edge.
For any finite set V we will view Map (V,Rn) ∼= Rn·#V as a n · #V

dimensional manifold. So we have notions like continuity and differentiability
when dealing with functions from or to Map (V,Rn).
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There is a differentiable function called the edge function which will proof
useful later on since it encodes enough information to tell whether a frame-
work is infinitesimally rigid or not.

h : Map (V,Rn) → Map(E,R) (5)

f 7→
(
e 7→ lf (e)

2
)

The fact that h is differentiable follows from | · |2 being differentiable.

There are also a view conventions about tangent spaces of manifolds that
I will use. These conventions follow the definition of the geometric tangent
space as defined in ”Vector Analysis” 2. Let M be a manifold and p ∈M be a
point. Then TpM denotes the tangent space at M in p. Elements in TpM are
represented by equivalence classes of differentiable curves passing through p.
So if we write [y] ∈ TpM we implicitly say that y is a differentiable curve
in M passing through p and that [y] is it’s equivalence class in TpM . Now
let N be a second manifold, and f : M → N a map which is differentiable
in p then dfp : TpM → Tf(p)N denotes the differential of f at the point
p, and is given by dfp([y]) = [f ◦ y]. Now let U ⊆ V be two finite sets
then we have a restriction map ρ : Map(V,Rn) → Map(U,Rn). This map is
differentiable and hence for every f ∈ Map(V,Rn) it also induces a restriction
map dρfTf Map(V,Rn) → Tρ(f) Map(U,Rn) on the tangent sheaves. Let
y ∈ Tf Map(V,Rn) then we use y|U := dρf (y) as a shorthand notation and
if U = {u} a set of only one point we also use y(u) := dρf (y) as notation.
These restriction maps give lead to a natural isomorphism:

Φ : Tf Map(V,Rn) →
∏
p∈V

Tf (p)Rn (6)

[y] 7→ (y(p))p∈V

So if we write V = {v1, . . . , vn} we can write y ∈ Tf Map(V,Rn) as y =
(y1, . . . , yn) = (y(v1), . . . , y(vn)). In the context of frameworks y should be
thought of an infinitesimal change of the framework as a whole, while the y1

up til yn are the velocity vectors of v1 till vn.

1.1 Infinitesimal Rigidity

Being a textbook on Rigidity is not the goal of my thesis. Therefore I will
only give a definition of infinitesimal rigidity. For a definition of rigidity and
the fact that infinitesimal rigidity implies regular rigidity I refer to the book

2Vector Analysis by Klaus Jänich ISBN: 0-387-98649-9
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”Counting on Frameworks” 3. This books gives a detailed explanation of
frameworks and rigidity and also a lot of examples.

Let G = (V,E) be a graph and F = (G, f) be an n-dimensional framework
then the edge function h : Map(V,Rn) → Map(E,R) is differentiable and
hence the differential of h is defined for every f ∈ Map(V,Rn). For [y] =∈
Tf Map(V,Rn) we have dhf ([y]) = [h ◦ y] = 0 if and only if [h ◦ y](e) = 0
for all edges e ∈ E. Let t be the parameter on which the curve y depends

then [h ◦ y](e) = 0 if and only if dly(e)2

dt
(0) = 0. The latter equation can be

interpreted as that the square of the length of the edge e doesn’t change as
a result of the infinitesimal change of the framework. This justifies the the
following definition.

Definition 1.5. An infinitesimal movement of a framework F = (G, f) is a
tangent vector y ∈ Tf Map(V,Rn) for which dhf (y) = 0 holds. The vector
space of all infinitesimal movements is denoted by by TmovF , and we will
denote Tf Map(V,Rn) by TF .

To work with this rather abstract definition in a more explicit cases one
should just write down a matrix of the linear map dhf with respect to a basis
so you can precisely calculate the infinitesimal movements. Another remark
that might give more insight is that for an edge e = {v1, v2} the expression
dly(e)2

dt
(0) = 0 can be rewritten as

dly(e)
2

dt
(0) =

d|y(v1)− y(v2)|2

dt
(0) = 2〈dy(v1)− y(v2)

dt
(0), f(v1)− f(v2)〉 = 0

In other words the difference in velocities of the points v1 and v2 must be
perpendicular to f(v1)−f(v2) or equivalently, the velocities of v1 and v2 have
to be the same in the f(v1)− f(v2) direction.

The matrix belonging to dhf is called the rigidity matrix in the literature.
Since it encodes enough information to see if a framework is infinitesimally
rigid or not as we will see later on.

Some of these infinitesimal movements are not really infinitesimal defor-
mations since they can be obtained by infinitesimally moving the framework
as a whole. These infinitesimal movements which come from infinitesimally
moving the framework as a whole are called the infinitesimal isometries of
the framework. For the formal definition of infinitesimal movements we use
that Isom(Rn) act in a differentiable way on Map(V,Rn). This action can be

3Counting on Frameworks: Mathematics to Aid the Design of Rigid Structures, by
Jack E. Graver. ISBN: 0-88385-331-0
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given more explicit as follows:

ψ : Isom(Rn)×Map(V,Rn) → Map(V,Rn) (7)

(g, f) 7→ g ◦ f

Write ϕ := ψ(,f) then ϕ is a differentiable function from Isom(Rn) to
Map(V,Rn) with ϕ(Id) = f and hence induces a map dϕId : TId Isom(Rn)→
Tf Map(V,Rn).

Definition 1.6. The elements of im dϕId are called infinitesimal isometries
and we will use T isomF := im dϕId as a shorthand notation.

The elements in T isomF can be thought of as being infinitesimal move-
ments coming from infinitesimal isometries of Rn. And as isometries move
the points of Rn around, the infinitesimal isometries give velocities to all
points in the Rn. So more formally let v = [yt] ∈ TId Isom(Rn) be an equiv-
alence class of curves then for any p ∈ Rn we have that yt(p) is a curve in
Rn through p and hence gives rise to an equivalence class [yt(p)] ∈ TpRn. We
use v(p) := [yt(p)] as a shorthand notation for this.

It’s clear that T isomF ⊂ TmovF since the action of Isom Rn leaves the
lengths of the edges unchanged. So as definition of infinitesimal rigidity we
take:

Definition 1.7. A framework F is infinitesimally rigid if dim T isomF =
dim TmovF .
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2 Tools for proving infinitesimal rigidity

Checking (infinitesimal) rigidity of a framework directly from the definition
is a rather circuitous business. The goal of this section is to provide us
with tools which will come in handy to prove the infinitesimal rigidity of
frameworks. These will even allow us to prove the infinitesimal rigidity of
large sets of frameworks without explicitly finding the space of infinitesimal
movements TmovF or equivalently calculation the rank of the rigidity matrix
dhf .

For checking the infinitesimal rigidity of a framework you also have to
calculate the dimension of T isomF . The dimension of T isomF can be com-
puted in a very general way in all cases needed in the constructions given
later on.

Lemma 2.1. Let (G, f) be an n-dimensional framework such that the points
in im f are an affine span of Rn (or equivalently im f contains at least n+ 1
points in general linear position). Then the dimension of T isomF is given by
the formula

dimT isomF =

(
n+ 1

2

)
.

Proof. The isometry group of Rn has dimension
(
n+1

2

)
. So to prove the

statement it suffices to show that dϕId is injective in this case. Suppose that
[y] ∈ TId Isom(Rn) is an infinitesimal isometry such that dϕId([y]) = 0. Let
v0, . . . vn be the points such that f(v0), . . . , f(vn) are an affine span of Rn.
Then in particular dϕId([y])(vi) = [ϕ ◦ y](vi) = [y ◦ f ](vi) = 0. Let t be the
parameter on which y depends, then [y ◦ f ](vi) = 0 implies dy◦f

dt
(vi) = 0,

now since only y depends on t and not f we have dy
dt

(f(vi)) = 0 and hence
[y](f(vi)) = 0. Let p be any point in Rn, now since f(v0), . . . , f(vn) are
an affine span Rn we can find a0, . . . , an ∈ R such that

∑n
i=0 ai = 1 and∑n

i=0 aif(vi) = p. Now write y = A + b with A in the rotational part and b
in the translational part of Isom(Rn) then [y](p) = [A + b](

∑n
i=0 aif(vi)) =

[A](
∑n

i=0 aif(vi))+[b] =
∑n

i=0 ai[A](f(vi))+
∑n

i=0 ai[b] =
∑n

i=0 ai[y](f(vi)) =
0. Hence [y](p) = 0 for all p ∈ Rn, this can only happen if the infinitesimal
isometry [y] itself was already trivial and hence dϕId is injective indeed.

This lemma already makes our work a bit easier, for now we only have to
determine the dimension of TmovF if we want to determine if a framework is
infinitesimally rigid.
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2.1 Completely determining subsets

Before I continue with the next tool I will define three different sheaves
for every framework. It doesn’t matter if you don’t know what a sheaf is,
because the definitions will be understandable without this knowledge. Recall
that in the first section I defined a restriction map dρf : Tf Map(V,Rn) →
Tρ(f) Map(U,Rn) for all pairs of finite sets U ⊂ V .

Definition 2.2. Let F = (G, f) be a framework and V be it’s set of vertices,
we give V the discrete topology.

1. The tangent sheaf of F is denoted by TF . For any U ⊆ V we define
TF (U) := Tf Map(U,Rn). For W ⊂ U we define ρU,W : TF (U)→ TF (U)
to be the restriction map given earlier.

2. The sheaf of movements of F is denoted by FF . For any U ⊆ V the
sheaf we notate FF (U) := ρV,U(TmovF ) and ρU,W : FF (U) → FF (U)
for the restriction of the map in 1.

3. The sheaf of movements of F is denoted by IF . For any U ⊆ V the
sheaf we notate IF (U) := ρV,U(T isomF ) and ρU,W : FF (U) → FF (U)
for the restriction of the map in 1.

Completely determining subsets are subsets of the vertex set of a frame-
work with the property that if you prescribe the velocity vectors at these
points, then there is at most 1 way to assign velocity vectors to the other
points in a way that all these vectors together form an infinitesimal move-
ment. So more formally:

Definition 2.3. Let F = (G, f) be a framework and V it’s vertex set. A
set U ⊆ V is said to determine the infinitesimal movement of another set
W ⊆ V if and only if ρW∪U,U : FF (W ∪ U) → FF (U) is an isomorphism. U
is said to be a determining subset of F if U determines V .

This determinacy also satisfies some nice properties, as will be stated and
proved below.

Proposition 2.4. Let F be a framework and V it’s vertex set and let V1, V2, V3 ⊂
V be any three subsets. Then it holds that

1. V1 determines V1 (reflexivity).

2. if V1 determines V2 then V1 ∪ V3 determines V2 ∪ V3.

3. if V1 determines V2 and V3 ⊂ V2 then V1 determines V3.
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4. if V1 determines V2 and V2 determines V3 then V1 determines V3 (tran-
sitivity).

5. if V1 determines V2 and V3 then it determines V2 ∪ V3.

Proof.

1. This follows directly from ρV1,V1 : FF (V1) → FF (V1) being an isomor-
phism.

2. Consider the following commutative diagram.

FF (V1 ∪ V2 ∪ V3) FF (V1 ∪ V2)

FF (V1 ∪ V3) FF (V1)FF (V3)

What needs to be shown is that the restriction map from FF (V1 ∪V2 ∪
V3) to FF (V1 ∪ V3) is an isomorphism. By construction it’s already
a surjective homomorphism, so we only need to show injectivity. Now
take any two elements a, b ∈ FF (V1∪V2∪V3) such that a|V1∪V3 = b|V1∪V3 ,
then a|V1 = b|V1 and therefore also a|V1∪V2 = b|V1∪V2 since V1 determines
V2. We clearly also have a|V3 = b|V3 . But since V3 and V1 ∪ V2 form
an open cover of V1 ∪ V2 ∪ V3 we have that a = b which shows the
injectivity.

3. What needs to be shown is that the restriction map from ρV1∪V3,V1 is an
isomorphism. By construction it’s already a surjective homomorphism,
so we only need to show injectivity. Now take any two elements a, b ∈
FF (V1∪V3) such that a|V1 = b|V1 , since the restriction map from FF (V1∪
V2) to FF (V1 ∪ V3) is also surjective, we have that there are a′, b′ ∈
FF (V1 ∪ V2) such that a′|V1∪V3 = a and b′|V1∪V3 = b but then we have
a′|V1 = b′|V1 and since V1 determines V2 also a′ = b′ but then a =
a′|V1∪V3 = b′|V1∪V3 = b, showing the injectivity.

4. V2 determines V3 so 2 to proves that V1∪V2 determines V2∪V3. But now
we see that ρV1∪V2∪V3,V1 = ρV1∪V2,V1 ◦ ρV1∪V2∪V3,V1∪V2 is an isomorphism
since it’s a composition of two isomorphisms. Thus V1 determines V2 ∪
V3 and therefore also V3
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5. Define V ′2 = V2 − V3. According to 3 V ′2 is also completely determined
by V1. So if we take v1 ∈ FF (V1) then there are unique v′2 ∈ FF (V1∪V ′2)
and v3 ∈ FF (V1 ∪ V3) such that v′2|V1 = v1 = v3|V1 . Now since V1 ∪ V ′2
and V1 ∪ V3 cover V1 ∪ V2 ∪ V3 and (V1 ∪ V ′2) ∩ (V1 ∪ V3) = V1 we know
that there is a v ∈ FF (V1 ∪V2 ∪V3) such that v|V1 = v1 and that this v
is unique. Which shows that the restriction map from FF (V1∪V2∪V3)
to FF (V1) is an isomorphism.

Corollary 2.5. Part 3 and 5 of the above proposition shows that it suffices
to check determinacy only for points. Since together they immediately imply
that V1 determines V2 if and only if V1 determines {v2} for all v2 ∈ V2.

There is another thing to say about complete determinacy. It is preserved
under morphisms.

Proposition 2.6. Let F,G be two frameworks, the vertex sets of F and G
are V and W respectively. Let (k, l) : F → G be morphism of frameworks. If
V1, V2 ⊂ V are sets such that V1 determines V2 then k(V1) determines k(V2).

Proof. Before we really start with the proof, we first need some preparation.
The morphism (k, l) induces the following map:

ϕ(k,l) : Map(W,Rn) → Map(V,Rn) (8)

f 7→ l−1 ◦ f ◦ k (9)

This map between manifolds also induces a map between their tangent spaces
dϕ(k,l) : TG → TF . This map can of course be extended to a morphism of
their tangent sheaves. The map dϕ(k,l) can even be seen as map between their
sheaves of movement because for every edge {v1, v2} of F either {f(v1), f(v2)}
is also an edge of G or f(v1) = f(v2). Which shows that the condition x ∈ TG
is an infinitesimal movement of G is a stronger condition then the condition
that dϕ(k,l)(x) is an infinitesimal movement of F . There is also another thing
which can be said about dϕ(k, l) namely that it’s injective when viewing it
as a map from TG(k(V )) to TF (V ). This is a consequence of k : V → k(V )
being surjective. Therefore ϕ(k,l) : Map(k(V ),Rn) → Map(V,Rn) and also
dϕ(k,l) : TG(k(V ))→ TF (V ) are injective.

What we want to show is that the restriction map from FG(k(V1)∪k(V2))
to FG(k(V1)) is an isomorphism. By construction it’s already a surjective
homomorphism, so we only need to show injectivity. But this is an easy
consequence of the following diagram being commutative:

12



FG(k(V1 ∪ V2)) FG(k(V1))

FF (V1 ∪ V2) FF (V1)

ρ

dϕ(k,l) dϕ(k,l)

ρ′

Where ρ and ρ′are the restriction maps. We know that ρ′ is an isomorphism
and that both the dϕ(k, l) are injective so ρ also has to be injective.

The following proposition shows a way to make planar frameworks which
are completely determined by two points.

Proposition 2.7. Let F1 = (G1, f1), F2 = (G2, f2) be two infinitesimally
rigid frameworks of dimension 2 and let G3 be the graph consisting only
consisting of the point v3. Suppose there exist two points v1, v

′
1 of F1 and

two point v2, v
′
2 of F2 such that f1(v

′
1)− f1(v1) and f2(v

′
2)− f2(v2) are linear

independent and f1(v1) = f2(v2). Let F3 = (G3, f3) be the framework such
that f3(v3) = f1(v1) = f2(v2). Then the maps (g1, Id) : F3 → F1 and (g2, Id) :
F3 → F2 given by g1(v3) = v1 and g2(v3) = v2 are framework morphisms and
F = (G, f) := F1 qF3 F2 is completely determined by v′1 and v′2.

Please recall the remark which allowed us to view G1 and G2 are sub-
graphs of G3. This is needed to make sense of the statement v′1 and v′2
completely determine F , and will also be needed to make sense of the proof
below.

Proof. Since F1 and F2 are infinitesimally rigid and f1(v
′
1) − f1(v1) and

f2(v
′
2) − f2(v2) are both nonzero, so we see that v1 and v′1 determine F1

and v2 and v′2 determine F2 (since the infinitesimal isometries of the plane
are entirely fixed if you know them at two distinct points). Thus v1, v

′
1 and

v′2 completely determine as well F1 as F2 and thus entire F . What remains
to show is that the velocity vector at v1 is completely determined by v′1 and
v′2. Since F1 is infinitesimally rigid, we know what the velocity vector at v1

should be in the f1(v
′
1)− f1(v1) direction, given that we know the vector at

v′1. Since v1 and v2 are the same point in F , we can make the same remark
about the f1(v

′
2)−f1(v2) direction. So since f1(v

′
1)−f1(v1) and f1(v

′
2)−f1(v2)

are linearly independent, there is a unique possibility for the velocity vector
at v1, which proves the proposition.
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3 The Construction of Positive Algebraic Num-

bers

Until this point in the thesis it hasn’t been mentioned what is meant by
constructing a number. But now it’s time to give the definition.

Definition 3.1. A real number r is called (infinitesimally) n-constructable
if there exists an (infinitesimally) rigid n-dimensional framework (G, f) such
that Im lf = {1} and r ∈ Im df . When the framework (G, f) is not only
rigid but infinitesimally rigid, we call r infinitesimally rigid constructable.

H. Maehara showed what the 2-constructable numbers are, and what I will
do in my thesis is showing what the infinitesimally 2-constructable numbers
are.

Example 1. The question of this thesis is easy to answer in the 1-dimensional
case. The graph G of a framework (G, f) has to be connected for the frame-
work (G, f) to be (infinitesimally) rigid. For is it’s not connected you could
move the connected components around independently of each other. Since
the distance between two connected points has to be 1 and all the points
of a one dimensional framework (G, f) have to lie on the same line, all con-
structable distances have to be multiples of 1. So all the 1-constructable
numbers are a subset of N. The picture below shows that all numbers in N
are infinitesimally rigid 1-constructable. The proof that the framework in
this picture is infinitesimally rigid is left as an exercise to the reader.

v1 v2 v3 v4 vn−2 vn−1 vn vn+1

This example gives us the answer to the 1 dimensional case. The more
general n dimensional case is a bit harder, but it’s answer is still relatively
easy to formulate.

Theorem 3.2. The infinitesimally rigid n-constructable numbers are pre-
cisely the positive algebraic numbers (the numbers x ∈ R≥0 such that p(x) = 0
for some polynomial p ∈ Q[x]).

I will proof this theorem for n = 2. Proving it in higher dimensions as well
would make this thesis to long. If you are interested you can try to contact
me for a sketch of the proof. The proof is split in several smaller parts, one
part is the proof that all constructable numbers have to be algebraic. The
other part will concern the actual infinitesimally rigid construction of the
positive algebraic numbers. Since every infinitesimally rigid framework has
to be rigid, the theorem 3.2 is then proven.
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Theorem 3.3. All {1} , n constructable numbers have to be algebraic.

The proof of this theorem can be found in ”Distances in a rigid unit-
distance graph in the plane” by H. Maehara4. Instead of unit distance frame-
works he talks about unit distance graphs and there is only a small difference
in definition, but the proof can easily be translated to fit our definition.

4Discrete Applied Mathematics Volume 31, Issue 2, 15 April 1991, Pages 193-200
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3.1 Constructions in the plane

An arbitrary positive algebraic number can be constructed in an infinitesi-
mally rigid way. The construction that does this is build up out of several
other constructions. We continue with the description of these “sub” con-
structions.

3.1.1 Construction of the Natural numbers

Before we are going to construct the positive algebraic numbers we need first
to the natural numbers. The natural number n ∈ N can be constructed in
the plane with the bridge like construction shown in the picture below.

v1

vn+2

v2

vn+3

v3

vn+4

v4

vn+5

vn−2

v2n−1

vn−1

v2n

vn

v2n+1

vn+1

The graphGn of the 2-dimensional framework (Gn, fn) consists of the 2n+
1 points Vn = {v1, . . . , v2n+1} and the 4n − 1 edges (vi, vi+1), (vi+n, vi+n+1),
(vi, vi+n+1), (vi+n+1, vi+1) with i ∈ 2, . . . n, (v1, v2), (v1, vn+1) and (vn+1, v2).
And the realization fn is given by

fn(vi) =


(i− 1, 0) if i ≤ n+ 1

(i− n− 3

2
,

√
3

4
) else

. (10)

Proposition 3.4. (Gn, fn) is infinitesimally rigid for all n ∈ N

Proof. The first thing to be shown is that (Gn, fn) is completely determined
by v1 and vn+2. This can be done by induction. The induction step is to
show that if for 0 ≤ i ≤ n − 2 the points v2+i and vn+2+i are completely
determined by v1 and vn+2, then also v2+i+1 and vn+2+i+1 are completely
determined by v1 and vn+2. The initial step is to show that v2+0 and vn+2+0

are completely determined by v1 and vn+2. But this is clear since the proof
for vn+2+0 is determined by itself and for v2 it’s proposition 2.7. Now for
the induction step. This is straightforward, since 2.7 tells that vn+2+i+1 is
completely determined by v2+i and vn+2+i and that vn+2+i+1 is in it’s turn
completely determined by vn+2+i+1 and v2+i. So v1 and vn+2 indeed determine
(Gn, fn).

We also have that

dimF(Gn,fn) {v1, vn+2} = dimF(Gn,fn)(Vn) ≥ dim I(Gn,fn)(Vn) = 3.
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What also holds is dimF(Gn,fn) {v1, vn+2} ≤ 3. This is because dim T(Gn,fn) {v1, vn+2} =
4 and there is an edge between v1 and vn+2 hence

dimF(Gn,fn) {v1, vn+2} ≤ 4− 1

is at least one dimension smaller. Putting this all together we get dimF(Gn,fn)(Vn) =
dim I(Gn,fn)(Vn) so (Gn, fn) is infinitesimally rigid.

We will now introduce some notation to make it more easy to use the
frameworks (Gn, fn) in other constructions. Let a, b ∈ R2 such that |a−b| ∈ N
then we denote by F (a, b) the unique framework which is isometric to the
framework (G|a−b|, f|a−b|) and has the properties that f(v1) = a, f(v|a−b|+1 =
b and such that orientation of R2 is preserved, by the isometry in the frame-
work morphism.
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3.1.2 The Reverser

The reverser is not an infinitesimally rigid construction like F (a, b) but it
is verry close to being infinitesimally rigid, namely its space of infinitesimal
movements is only one dimension larger than its space of infinitesimal isome-
tries. Before defining the framework we introduce yet some more notation.

Definition 3.5. Let a and b be two points in R2 and x and y be two points
in R>0 such that |x − y| < |a − b| < x + y. We then define a∠y

xb to be the
intersection point of the circle with center a and radius x and the circle with
center b and radius y which lies on the left side of the line from a to b.

Definition 3.6. Let a and b be two points in R2 such that 0 < |a−b| < 8 then
we can define the following points: o := a∠4

4b, d := 1
4
o + 3

4
a, e := 1

2
o + 1

2
b,

f := d∠1
2e, g = 4f − 3e and c := g∠4

2o. We use these points to define
the framework R(a, b). The framework R(a, b) is obtained by gluing the
frameworks F (o, a), F (o, b), F (o, c), F (d, f), F (e, g), F (c, g) together over
the points which map to the same point by construction. And thus not over
points which might accidentally also map to the same point.

c

g

o d a

e

bf

R(a, b)

Proposition 3.7. The space of infinitesimal movements of R(a, b) is com-
pletely determined by the two vertices mapping to a and b and ∠aob = ∠boc.

Proof. It is clear that all the infinitesimal movements of R(a, b) are com-
pletely determined by o, a, b, c, d, e, f and g. What remains is to show that
the infinitesimal movements at o, c, d, e, f and g are determined by a and b.

According to 2.7 the infinitesimal movements at o are determined by a
and b.
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According to 2.7 d and e are determined by o, a and o, b respectively.
f on it’s turn is determined by d and e.
g is determined by e and f and finally
c is determined by o and g.

The equality of the two angles is easily proven as follows:
4fdo ∼= 4oef (side-side-side)
4geo ∼= 4ocg (side-side-side)
4oef ∼ 4geo (side-angle-side)
which leads us to:
∠aob = ∠doe = ∠dof − ∠eof = ∠eog − ∠cog = ∠eoc = ∠boc

This proposition shows that the space of infinitesimal movements of this
object is at most of dimension 4. But since the movement given by ψ(t) =
R(t ·a+(1− t)b, b) induces a non trivial infinitesimal movement. We see that
the space of infinitesimal movements has to be precisely 4.

In the case |a−c| < 8, the non trivial movement described previously also
induces a non trivial movement on the subframework consisting of points a
and c. Meaning that, in this case, the dimension of infinitesimal movements
of R(a, b) and a, c are the same and the map between the spaces is surjective,
so it has to be injective. As a result a and c are also completely determine
the framework.

3.1.3 The Orthogonalizer

We give jet another useful building block, which as the name sugests contains
three points which will be always orthogonal to each other.

g

c

b

d

a
e

f

Definition 3.8. Let a, b ∈ R2 and let n ∈ N such that n > |a − b|/2 > 0.
Define the points c = b∠n

na, d = a∠n
nb, e = n+4

n
a − 4

n
d, f = a + 4 c−d

|c−d| and
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g = n−4
n
a+ 4

n
c. Then the frameworkO(a, b, n) is obtained by gluing the frame-

works F (a, c), F (c, b), F (b, d), F (d, e) and R(e, f). And these frameworks are
then glued together over the points a til g.

Proposition 3.9. The infinitesimal movements of the framework O(a, b, n)
are determined by a and b. And b− a and f − a are orthogonal.

Proof. The orthogonality follows straight from f−a = b−d
|b−d| and the fact that

b and d by construction both lie on the perpendicular line bisector of a and
b.

It’s clear that a til g together completely determine the infinitesimal move-
ments of the entire framework. So it remains to show that the movements
at c till g are also completely determined by a and b. For c and d it’s clear
that they are determined by a and b. In it’s turn g is determined by a and
c and e by a and d. And according to the remark about the reverser, f is
determined by e and g since |g−e| = | 4

n
(c−a)+ 4

n
(d−a)| = 4

n
|b−a| < 8.

The movement h(t) = O(a, at+ b(1− t), n) induces a infinitesimal move-
ment dh

dt
which is not an infinitesimal isometry. Therefore the infinitesimal

movements of O(a, b, n) have to be at least 4 dimensional. As a result of the
proposition it’s also at most 4 dimensional. So the infinitesimal movements
are spanned by this non trivial movement, and the infinitesimal isometries.

3.1.4 Construction of the Positive Algebraic numbers

In this section an explicit method for constructing all algebraic distances
between 0 and 2 will be given. This construction will only depend on the
minimal polynomial of the given algebraic distance. For a given algebraic
distance x ∈ (0, 2) there exists a θ such that x = 2cos(θ). The main idea
is to make an infinitesimally rigid construction which contains this angle θ.
For this the following lemma will be useful.

Lemma 3.10. For every polynomial P ∈ N[X] of degree n there exist integers
a0, . . . , an such that

P (2cos(θ)) =
n∑
k=0

akcos(kθ)

Proof. This is an easy consequence of the power reduction formulas for the
cosine. These two formulas state that:

cosn(θ) =
1

2n−1

n−1
2∑

k=0

(
n

k

)
cos((n− 2k)θ)
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when n is odd. And:

cosn(θ) =
1

2n

(
n
n
2

)
+

1

2n−1

n
2
−1∑

k=0

(
n

k

)
cos((n− 2k)θ)

When n is even. Applying these formula’s to every term of the polynomial
gives the desired result.

The first step of the construction is a fan as in the picture below.

Fan(π
6
, 5, 6,−6, 3, 4, 6)

Define p(θ) = (cos(θ), sin(θ)) ∈ R2. Thus r · p(θ) is a way to denote the
point with radius r and angle θ polar coordinates.

Definition 3.11. The framework Fan(θ, a0, . . . , an) consists of the following
three sets of frameworks.

1. For all positive ak the framework Fk(0, akp(kθ))

2. For all negative ak the framework Fk(4p(kθ), akp(kθ))

3. For all 0 ≤ k ≤ n− 2 the reverser Rk(4p(kθ), 4p((k + 1)θ))

These frameworks are then glued together over the points which map to
the same point in R2 by construction. And not the points which might
accidentally happen to map to the same point.

Proposition 3.12. The space of infinitesimal movements of Fan(θ, a0, . . . , an)
is completely determined by the two vertices mapping to 4p(0) and 4p(θ).
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Proof. As soon as the spaces at 4p(kθ) and 4p((k + 1)θ) are determined
by 4p(0) and 4p(θ), the space at 4p((k + 2)θ) is also determined by 4p(0)
and 4p(θ) because this point is part of reverser Rk. So by induction, the
infinitesimal movements of all the point of each Rk are completely determined
by 4p(0) and 4p(θ). For 0 ≤ k ≤ n−2 the defined Fk have at least two points
in common with Rk, these two points are 0 and p(kθ), therefore the space of
infinitesimal movements of these Fk are also determined by 4p(0) and 4p(kθ).
The frameworks Fn−1 and Fn have, when defined, two points in common with
Rn−2 so the space of infinitesimal movements of these two frameworks are
also completely determined by 4p(0) and 4p(kθ).

The next step is to make a construction that ”adds” all the vectors akp(kθ)
in such a way that the infinitesimal movements of this new construction are
still completely determined by 4p(0) and 4p(θ). An example of such a con-
struction is shown in the picture below. For more a step by step construction
of this picture below see Appendix A.

s2

s3

s4

s5

s6

s1

Add(π
6
, 5, 6,−6, 3, 4, 6)

Given the integers a0, . . . , an and an angle θ we define s−1 := 0 and for
0 ≤ k ≤ n and s−1 = 0 we define sk := sk(θ, a0, . . . , an) :=

∑k
i=0 aip(iθ).

Definition 3.13. The framework Add(θ, a0, . . . , an) consists of the following
frameworks.
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1. The framework Fan(θ, a0, . . . , an) and the following set of frameworks.

2. For every 0 ≤ j < k ≤ n such that aj 6= 0 andak 6= 0 the two frame-
works F (sj, sj + akp(kθ)) and F (sj−1 + akp(kθ), sj + akp(kθ)).

And again, these things are glued together over the points which by con-
struction map to the same point in R2, thus not gluing over points which
might happen to map to the same point by an unlucky choice of θ.

Proposition 3.14. When θ is an irrational multiple of π, the infinitesimal
movements of the framework Add(θ, a0, . . . , an) are completely determined by
4p(0) and 4p(θ).

Proof. This is a proof by induction. First note that we already proved that
all the points in Fan(θ, a0, . . . , an) are already completely determined by
4p(0) and 4p(θ). In the case j = 0 and 0 < k ≤ n all the points s0 + akp(kθ)
are completely determined by 4p(0) and 4p(θ). This is because these points
are either points in Fan(θ, a0, . . . , an) (case ak = 0 or a0 = 0) or completely
determined by points Fan(θ, a0, . . . , an) (the case aj 6= 0 andak 6= 0). Noting
that kθ cannot be an angle of 0 or π degrees and then applying proposition
2.7 to the frameworks F (s0, s0 +akp(kθ)) and F (akp(kθ), s0 +akp(kθ)) proves
the correctness of the claim in the case aj 6= 0 andak 6= 0.

Now assume that for a j = i and all i < k ≤ n the points sj +akp(kθ) are
completely determined. Then for j = i+ 1 and i+ 1 < k ≤ n, we have that
the point sj + akp(kθ) either coincides with a point of the form si + akp(kθ)
(case ak = 0 or aj = 0) or these points are connected to points of the form
si+1 + akp(kθ) (case ak 6= 0 and aj 6= 0). In the first case the induction
step is trivial. In the second case we apply proposition 2.7 again and find
that the point in question is completely determined by the points of the form
si + akp(kθ).

At this point the construction is almost finished. All what needs to be
done is to attach an orthogonalizer to make it infinitesimally rigid.

Definition 3.15. Let x ∈ (0, 2) be algebraic and let P ∈ N[X] be a poly-
nomial of minimal degree such that P (x) = 0, take n = degP , let ai ∈ N
be as in lemma 5.9 and θ ∈ R such that x = 2cos(θ). Then we define the
constructing framework of x to be C(a0, . . . , an, θ). Where C(a0, . . . , an, θ)
is the union of Add(a0, . . . , an, θ) and O(0, sn). 5 These two frameworks are
glued together over 0, 4p(0) and sk.

5Remember that sk =
∑n

i=1 aip(iθ) with p(x) = (cos(x), sin(x))
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Proposition 3.16. If C(a0, . . . , an, θ) is the constructing framework of x
such that θ is an irrational multiple of π then it is infinitesimally rigid.

Proof. The dimension of the space of movements C(a0, . . . , an, θ) is at most
4 since it’s completely determined by the two points which also completely
determine Add(θ, a0, . . . , an). So for showing the infinitesimal rigidity of
C(a0, . . . , an, θ) it suffices to show that there is just one movement of the
points 4p(0) and 4p(θ) which doesn’t come from the entire framework. The
movement h(t) = Add(θ(1−t), a0, . . . , an) induces an infinitesimal movement
g of Add(a0, . . . , an, θ(1 − θ)) and also an infinitesimal movement g′ of the
two points 4p(0) and 4p(θ). Since 4p(0) and 4p(θ) determine the infinitesimal
movements of Add(a0, . . . , an, θ(1 − θ)), all the infinitesimal movements off
the entire framework C compatible with g′ have to restrict to the infinites-
imal movement g on Add. Now assume there exists such an infinitesimal
movement of C.

This would also mean that there exists an infinitesimal movement h of
O(0, sn) such that the velocity vector at 0 and 4p(0) is zero and at sn is given
by:

(
n∑
i=1

daicos(iθ)

dθ
,

n∑
i=1

daisin(iθ)

dθ
)

The first coördinate is nonzero which can be proven by contradiction. Assume
it’s zero then

0 =
n∑
i=1

daicos(iθ)

dθ
= 2sin(θ)P ′(2cos(θ)) = P ′(2cos(θ)) = P ′(x)

The second last step holds since 2sin(θ) 6= 0 implies that 0 = P ′(2cos(θ)).
Which is in contradiction with the minimality of the degree of P . As a
result the first coördinate is nonzero indeed . The space of infinitesimal
movements of O(0, sn) is spanned by the infinitesimal isometries and the
movement induced by k(t) = O(0, (1 − t)sn) which we will call k′. But
since sn = (

∑n
i=0 aicos(iθ), sn,2) = (0, sn,2) the velocity vector at sn of k′

also has zero as first coordinate. k(t) also leaves the points 0 and 4p(0)
fixed so the velocity vectors at these points are also zero in the infinitesimal
movement k′. The infinitesimal movements of O(0, sn) are spanned by k′ and
the infinitesimal isometries so h− λk′ has to be an infinitesimal isometry for
some λ. The velocity vectors at 0 and 4p(0) are zero in both k′ and h so
the infinitesimal isometry h − λk′ has to be the identity. Contradicting the
fact that the first coördinate of this movement at sn is nonzero. As result
there are no infinitesimal movement of C such that it is g′ at the points 0
and 4p(0). And that it is therefore infinitesimally rigid.
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Proposition 3.17. If θ = π
k

with k ∈ N then Fan(θ, 1, . . . , 1) with k ones
and the two points at 4p(0) identified is infinitesimally rigid.

Proof. The infinitesimal movements of the framework are completely deter-
mined by 4p(0) and 4p(θ) so its dimension can at most be 4. But the in-
finitesimal movement which keeps 4p(0) on its place and rotates 4p(θ) in-
finitesimally around the origin does not extend to a movement of the entire
framework. Since this would mean that one of the two identified points has
to have a velocity vector of 0 and the other has to have a velocity vector
which is 2k times as long as the vector at 4p(θ).

3.2 Proof of the main theorem

With all the propositions in this thesis and the use of theorem 3.3 the main
theorem 3.2 is now easily proven. Theorem 3.3 shows that the constructable
numbers need to be algebraic, and since infinitesimal rigidity is a stronger
condition then rigidity, infinitesimally rigid constructable numbers also need
to be algebraic. For the other way around we will use propositions 3.16 and
3.17. Now let x ∈ R > 0 be an algebraic distance and k ∈ N such that
x < 2k, and θ such that x = k2cos(θ). Then 3.16 gives us that we have an
infinitesimal rigid construction containing 4p(0) and 4p(θ) in the case that
θ is an irrational multiple of π, and 3.17 gives us this in the other case (if
φ = a

b
π then both points are in Fan(1

b
π, 1, . . . , 1)). Now to this framework

we can glue R(4p(0), 4p(θ)), F (0, kp(0)) and F (4p(2θ),−kp(2θ)) still leaving
it infinitesimally rigid. The distance x can now be found between the points
kp(0) and −kp(2θ) since

|kp(0) + kp(2θ)| = k|p(−θ) + p(θ)| = k(cos(−θ) + cos(θ)) = k2cos(θ) = x

.
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4 Appendix A

Step by step construction of Add(π
6
, 5, 6,−6, 3, 4, 6):

s1

s2

s3

s4

26



s5

s2

s3

s4

s5

s6

s1
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