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Abstract

This thesis consists of two related parts. In the first part the Q-
gonality of X1(N) is computed for all odd N ≤ 29 and a very good
lower bound is given for N = 31 (see corollary 2.17). In the second
part of this thesis it shown that if there is a torsion point of prime
order p on an elliptic curve over a number field with degree 5 over Q,
then p ≤ 19 or p ∈ {29, 31, 41}. Also all primes p ≤ 19 occur as the
order of a torsion point of some elliptic curve over a number field of
degree at most 5. Table 3.2 also contains the results obtained using
the same techniques for number field of degrees 6 and 7.

4



Preface

As already mentioned in the abstract this thesis consists of two parts. These
parts can be read independently of each other. Part I is about computing
gonalities of modular curves and contains a large part where some tools are
developed to compute gonalities of general curves over finite fields. This part
requires significantly less prerequisites then the second part and most of it
should be readable without knowing what a modular curve is.

Part II which is the main part of this thesis and focuses on the question
which primes can occur as the order of a point on an elliptic curve over a
number field of degree at most d for d = 5, 6, 7. This part requires a lot
more theory. And it would be unfeasible to discuss it all in detail. Instead
I refer to [Diamond and Im, 1995] which I have personally found very useful
in learning the prerequisites on modular forms and modular curves needed
for writing this thesis. For a quick introduction without proofs one can also
consult the preliminaries section of [Bosman, 2008]. The more experienced
reader might also enjoy [Katz and Mazur, 1985], but I would certainly not
recommend that to someone new to the subject.

I would like to thank William Stein for the inspiring talk he gave on this
subject that ultimately led me to choose this as a subject for my masters
thesis and allowing me to use his code for d = 4 as a starting point for the
code I ended up writing for d = 5, 6, 7. I also would like to thank Mark van
Hoeij, Sheldon Kamienny, Barry Mazur, Michael Stoll, Marco Streng and
Andrew V. Sutherland for the interesting discussions related to the subject
of this thesis. And last but not least I want to thank Bas Edixhoven for
everything he taught me and the great amount of time and dedication he has
for his students.

1 Definitions and notation

Let N be an integer and H ⊆ (Z/NZ)∗ be a subgroup then we define the
congruence subgroups Γ0(N),Γ1(N) and ΓH as follows:

Γ0(N) :=

{[
a b
c d

]
∈ SL2(Z) |

[
a b
c d

]
≡
[
∗ ∗
0 ∗

]
mod N

}

Γ1(N) :=

{[
a b
c d

]
∈ SL2(Z) |

[
a b
c d

]
≡
[
1 ∗
0 1

]
mod N

}
ΓH :=

{[
a b
c d

]
∈ SL2(Z) | a mod N, b mod N ∈ H, c = 0 mod N

}

5



1.1 Modular Curves

For an arbitrary scheme S we define an elliptic curve over S to be a proper
smooth group scheme E/S such that all its geometric fibers are connected
curves of genus 1. Now let N be an integer and suppose that S is an Z[1/N ]-
scheme then we say that a section P ∈ E(S) has exact order N if NP = 0
and Pk ∈ Ek(k) has order N for all geometric points k of S. Now let F1(N)
denote the functor F1(N) : Sch /Z[1/N ] → Sets which sends a Z[1/N ]-scheme
S to the set of all isomorphism classes of pairs (E,P ) where E/S is an elliptic
curve and P ∈ E(S) has exact order N . We have the following important
result of Igusa [see Diamond and Im, 1995, thm. 8.2.1]

Theorem 1.1. If N ≥ 4 then there is a scheme Y1(N) which represents
the functor F1(N). Moreover Y1(N) is smooth of relative dimension 1 over
Z[1/N ] and has geometrically connected fibres.

By E1(N)univ we will denote the elliptic curve over Y1(N) corresponding
to Id: Y1(N)→ Y1(N). There is also a similar functor which we will also use
in this thesis. Namely the functor Fµ(N) : Sch /Z[1/N ] → Sets which sends a
Z[1/N ]-scheme S to the set of all isomorphism classes of pairs (E, i) where
E/S is an elliptic curve and i : µn,S → E is closed immersion (and a morphism
of group schemes of course). There also exists a scheme Yµ(N) that repre-
sents the functor Fµ(N). However the elliptic curve over Yµ(N) correspond-
ing to the morphism WN is not isomorphic to the elliptic curve Eµ(N)univ
corresponding to Id: Yµ(N)→ Yµ(N). However they are isogenous because
the curve coresponding to WN is isomorphic to Eµ(N)univ/µNYµ(N). Now
Yµ(N) and Y1(N) are not proper over Z[1/N ], but they are open subschemes
of proper Z[1/N ]-schemes Xµ(N) and X1(N). If N ≥ 5 these schemes Xµ(N)
and X1(N) also have a moduli interpretation in terms of so-called generalized
elliptic curves [see Diamond and Im, 1995, Chap. 9].

Let d be an integer coprime to N then there are the automorphisms
〈d〉 : X1(N) → X1(N) and 〈d〉 : Xµ(N) → Xµ(N). The first one sends the
pair (E,P ) to (E, dP ) and in the second case it sends (E, i) to (E, [d] ◦ i)
where [d] : E → E denotes multiplication by d. These automorphisms 〈d〉
are called the diamond operators. Now the diamond operators give group
actions of (Z/NZ)∗ on both X1(N) and Xµ(N). This action actually factors
trough (Z/NZ)∗/ {±1} since multiplication with −1 gives an isomorphism
between the pairs (E,P ) and (E,−P ) and (E, i) to (E, [−1]◦ i). This allows
us to make the following definition.

Definition 1.2. Suppose H ⊂ (Z/NZ)∗/ {±1} is a subgroup then we define
XH := Xµ(N)/H and we define X0(N) := X(Z/NZ)∗/{±1}.
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In this thesis we will use J1(N), Jµ(N), JH and J0(N) as shorthand no-
tation for the Jacobians of the curves X1(N),Xµ(N),XH and X0(N).

1.2 Katz modular forms

In this section we take N ≥ 5 so that X1(N) and Xµ(N) have a mod-
uli interpretation. The pullback of Ω1

Eµ(N)univ/Xµ(N) along the morphism

0: Xµ(N) → Eµ(N)univ will be denoted by ωµ(N). It is an invertible sheaf
on Xµ(N). For all Z[1/N ]-algebras A and any integer k we can consider the
invertible sheaf ωµ(N)⊗kA on Xµ(N)A. A global section of this sheaf is called
a Katz modular form of weight k with coefficients in A and we will use the
notation

Mk(Γ1(N), A) := H0(Xµ(N)A, ωµ(N)⊗kA )

for the space of Katz modular forms. Viewing Xµ(N)(C) as H∗/Γ1(N) we
can identify Mk(Γ1(N),C) with the usual modular forms. Let cusps be the
divisor of all cusps on Xµ(N) (with multiplicity 1) then we define the space
of all cuspforms of weight k to be

Sk(Γ1(N), A) := H0(Xµ(N)A, ωµ(N)⊗kA (−cusps)).

Cuspforms of weight 2

The Kodaira-Spencer isomorphism

ωµ(N)⊗2(−cusps)→ Ω1
Xµ(N)

allows us to identify

S2(Γ1(N), A) := H0(Xµ(N)A, ωµ(N)⊗kA (−cusps)) ∼= H0(Xµ(N)A,Ω
1
Xµ(N)A/A

).

This allows us to define S2 also for other congruence subgroups. Namely
suppose that H ⊆ (Z/NZ)∗ and A is a Z[1/N ] algebra then we define

S2(ΓH , A) := H0(XH,A,Ω1
XH,A/A).

It is not necessarily true that S2(ΓH , A) ∼= S2(Γ1(N), A)H . Now S2(Γ1(N), A)H

is the definition of the space of Katz Modular forms that can be found in
the literature. So we will not call the just defined space S2 the space of Katz
Modular forms. It is however the correct notion needed later on in this thesis
because with this definition of S2 we have

S2(ΓH , A) := H0(XH,A,Ω1) ∼= H0(JH,A,Ω
1) ∼= cot0 JH,A. (1.2.1)

7



By viewing XH(C) as H∗/ΓH we again can identify S2(ΓH ,C) with the usual
modular forms. By T1, T2, . . . we denote the usual Hecke operators. These
act on S2(ΓH ,C) and we let TΓH ⊂ EndS2(ΓH ,C) denote the Z-algebra
generated by T1, T2, . . . and TΓ0(N) and TΓ1(N) are defined similarly. If H is
clear from the context I will also sometimes just write T. Over the complex
numbers there is the isomorphism

JH(C) ∼= H0(XH(C),Ω1)∨/H1(XH(C),Z).

Precomposition gives an action of T on S2(ΓH , C)∨ := H0(XH(C),Ω1)∨ and
this action induces an action of T on JH(C), this action is actually defined
over Z[1/N ] [see Diamond and Im, 1995, p.p. 85-86]. So by base change
T also acts on JH,A and hence cot0 JH,A. Using the isomorphism 1.2.1 we
can extend the action of TΓH on S2(ΓH ,C) to all S2(ΓH , A) in a way that is
compatible with base change.

q-expansions

Now the Tate curve Eq over A[[q]] with the standard µN,A immersion will
give us an element in P ∈ Xµ(N)(A[[q]]) and hence an PH ∈ XH(A[[q]]) for
all subgroups H ⊆ (Z/NZ)∗/ {±1}. For this PH we have PH,A = ∞A and q
is called the standard formal parameter at ∞A. Now pulling back along PH
gives us a homomorphism:

S2(ΓH , A) := H0(XH,A,Ω1
XH,A/A)→ H0(SpecA[[q]],Ω1

Eq/A[[q]]).

The right hand side is a free A[[q]] module with basis dt/t where dt/t is the
standard differential on Eq. By writing every element with respect to this
basis we get a homomorphism

S2(ΓH , A)→ A[[q]].

The image of a modular form f ∈ S2(ΓH , A) under this map is called the
q-expansion of f . Over C this is the same as usual q-expansion.

1.3 Multisets

Multisets are a variation on sets which can contain the same element multiple
times. The precise definition I will use is the following:

Definition 1.3. A multiset is a pair (S, f) where S is a set and f : S → Z≥1.
The function f is called the multiplicity function. A multiset (S, f) is
called finite if S is finite and for finite multisets the cardinality is defined
as #S :=

∑
s∈S f(s).
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I will also use set like notation to define multisets, I will use { and } for
sets while using {{ and }} for multisets. For example {{1, 1, 2}} denotes the
multiset which contains the element 1 twice and the element 2 once, i.e. it
is the pair (S, f) with S = {1, 2} and f is given by f(1) = 2 and f(2) = 1.
The operators ⊆,∩,∪ and ] on multisets are defined as follows:

Definition 1.4. Let (S1, f1) and (S2, f2) be two mulitisets then

• (S1, f1) ⊆ (S2, f2) if S1 ⊆ S2 and ∀s ∈ S1 : f1(s) ≤ f2(s).

• (S1, f1) ∩ (S2, f2) := (S1 ∩ S2, s 7→ min(f1(s), f2(s))

• (S1, f1) ∪ (S2, f2) := (S1 ∪ S2, s 7→ max(f1(s), f2(s))) where f1(s) = 0
if s /∈ S1 and f2(s) = 0 if s /∈ S2.

• (S1, f1) ] (S2, f2) := (S1 ∪ S2, s 7→ f1(s) + f2(s)) where f1(s) = 0 if
s /∈ S1 and f2(s) = 0 if s /∈ S2.

Note that the operators ⊆,∩,∪ coincide with the usual set operations
when viewing a set S as the multiset (S, s 7→ 1).
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Part I

Gonalities

2 The gonality of X1(N)

A map of degree d from X1(N)Q to P1
Q allows us to construct infinitely many

points on the modular curve X1(N)Q of degree at most d and hence also
infinitely many elliptic curves E over a number field of degree at most d
which have a rational N torsion point. Frey also proved a converse result as
a short corollary of a theorem of Faltings.

Theorem 2.1 ([Frey, 1994]). Let K be a number field and C/K be a projec-
tive absolutely irreducible smooth curve with C(K) 6= ∅ and suppose d is an
integer such that C has infinitely many points of degree at most d over K.
Then there is dominant morphism C → P1

K of degree ≤ 2d.

Now we make the following definition:

Definition 2.2. Let C be a projective absolutely irreducible smooth curve
over a field K and let K ⊂ L be a field extension. Then the lowest possible
degree 1 of dominant map from CL to P1

L is called the L-gonality of C. The
L gonality is denoted by gonL(C).

The above discussion shows that the gonality of X1(N)Q is a useful quan-
tity to know if one wants to study the points on X1(N) over number fields.

Another motivation for wanting to know the gonality is the following
theorem due to Michael Stoll in [Derickx, Kamienny, Stein, and Stoll, in
preparation]:

Theorem 2.3. Let C/Q be a projective smooth and geometrically connected
curve with Jacobian J , let d ≥ 1 be an integer, and let ` be a prime of good
reduction for C. Let P0 ∈ C(Q) be chosen as base-point for the morphism
ι : C → J . This also induces morphisms Cd → J and C(d) → J from the dth
power and from the dth symmetric power of C. If the following assumptions
hold

1. The Q gonality of C is at least d+ 1

2. J(Q) is finite.

3. ` > 2 or J(Q)[2] injects into J(F`) (for example, #J(Q)tors is odd).

1See 2.8 for several equivalent definitions of the degree of a morphism to P1
L
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4. The reduction map C(Q)→ C(F`) is surjective.

5. The intersection of the image of C(d)(F`) in J(F`) with the image
of J(Q) under reduction mod ` is contained in the image of Cd(F`).

Then the only points of degree ≤ d on C are the rational points on C.

In the same article it is shown among other things that there are ` such 2-
5 are satisfied for d = 5 and C = X1(29)Q,X1(31)Q or X1(41)Q. It is already
known that the gonality of X1(41)Q is 8 or higher by the following lower
bound:

Theorem 2.4 ([Abramovich, 1996]2). Let N be a prime then

gonC(X1(N)) ≥ 7

1600
(N2 − 1).

If Selberg’s eigenvalue conjecture is true then 7
1600

can be replaced by 1
192

.

But this bound, even with the assumption of Selberg’s eigenvalue conjec-
ture, is not good enough to show that the gonality is at least 6 or higher for
X1(29)Q and X1(31)Q. We will show that gonQ(X1(29)) ≥ 11 and gonQ(X1(31)) ≥ 12
so that Michael Stoll’s theorem can also be applied to show that the only
points on X1(29) and X1(31) of degree ≤ 5 over Q are the cusps. Together
with theorem 3.1 this will give S(5) = {2, 3, 5, 7, 11, 13, 17, 19}.

The main idea is to use the following theorem which will be proven in
section 2.2.

Theorem 2.5. Let S = SpecR be the spectrum of a discrete valuation ring
with generic point η and closed point s. Let X be a projective S-scheme,
smooth of relative dimension one, with geometrically irreducible fibres. Then

gonk(η)(Xη) ≥ gonk(s)(Xs).

This theorem allows us to reduce computations of a lower bound for the
Q-gonality of X1(N) to computations of the gonality over finite fields. And
over a finite field F computing the gonality is reduced to finding the smallest
degree of an effective divisor such D that dimH0(X1(N)F,OX1(N)F(D)) ≥ 2.
This is a finite problem so at least it is theoretically computable.

Doing this computation by brute force is however too slow to be prac-
tical for X1(29)F2 and X1(31)F2 . In section 2.3 we describe how to exploit

2Abramovich actually proves a lower bound for all modular curves. The statement that
is given here is what one gets if we restrict to the case we are interested in here.
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the automorphisms of X1(N)F and P1
F to make the gonality computations

possible.
Note that the asymptotic behaviour of the gonality X1(N) is already quite

well known. Because X1(N) has a Q rational point we see in particular that
if g(X1(N)) ≥ 2 then gonQ(X1(N)) ≤ g(X1(N)) [see Poonen, 2007, Appendix
A]. In the case that N is a prime > 11 we in particular see that:

gon(X1(N)) ≤ (N − 5)(N − 7)

24
.

As a corollary we get the following theorem which is a slight improvement of
[Clark et al., thm. 7](accepted for publication).

Theorem 2.6. Let N > 3 be a prime number and K a number field. Then:

a) The set of points of X1(N) of degree less than d 7
3200

(N2 − 1)e over K
is finite. Assuming Selberg’s eigenvalue conjecture the bound can be
improved to d 1

384
(N2 − 1)e.

b) The set of points of X1(N) of degree at most (N−5)(N−7)
24

over K is
infinite.

Note that the theorem in [Clark et al.] is not stated relative to a number
field. We added it here because the proof given there is also valid for the
relative statement. The bound in b) given there is N2−12N+11

12
. The reason

for this is that they use a weaker upper bound for the gonality which is also
true for curves that don’t have a rational point.

Proof. Part a) follows directly from Frey’s theorem together with the lower
bound for the C-gonality given by Abramovich. While part b) is directly
clear from the upper bound of the gonality in terms of the genus.

2.1 Ingredients for the proof of theorem 2.5

This section discusses the theory of [Liu, 2002] used to prove theorem 2.5.
We will give several equivalent definitions of the degree of a morphism to the
P1, so that we can use the one most suitable one while proving the theorem.

Dominant morphisms to the projective line

Let X be a normal curve over a field k then there are at least two ways
to describe a dominant morphism to P1

k. The first one is by using the
equivalence between “the category of projective normal curves over k with
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dominant morphisms” and “the category of function fields of transcendence
degree 1 over k with k-algebra morphisms”. To make this more explicit
let ψ : K(P1

k) = k(t) → K(X) be a morphism then ψ induces a morphism
π : X → P1

k = Proj k[x0, x1] as follows. Let f := ψ(t), then this will be
a transcendental element in K(X). Now let U = X \ Supp(f)∞ the open
subset on which f has no poles and V = X \ Supp(f)0 be the set where
it has no zeros. Now let π0 : U → D+(x0) be the morphism corresponding
to the ring morphism k[x1/x0] → OX(U) given by x1/x0 7→ f and similar
π1 : U → D+(x1) is the morphism corresponding to k[x0/x1]→ OX(V ) given
by x0/x1 7→ 1/f . These morphisms agree on U ∩ V by construction and
hence we get a morphism π : X → P1

k. Since f is transcendental π will be
dominant. To get ψ back from π simply let ξ, η be the generic points of X
and P1

k respectively then since π is dominant we see that π(ξ) = η hence π
induces a morphism k(t) = OP1

k,η
→ OX,ξ = K(X) which is equal to ψ.

The second way to describe a morphism from X → P1
k is more general

and will actually work for X any scheme and P1
k replaced by any projective

space over any ring.

Proposition 2.7. [Liu, 2002, prop. 5.1.31] Let PdA := ProjA[T0, . . . , Td] be
a projective space over a ring A and let X be an A scheme.

(a) Let π : X → PdA be a morphism then π∗(OPdA
(1)) is an invertible sheaf

on X which is generated by the d+ 1 global sections π∗(T0), . . . , π∗(Td).

(b) Conversely, for any invertible sheaf L on X generated by d + 1 global
sections s0, . . . , sd there exists a unique morphism π : X → PdA such
that L ∼= π∗(OPdA

(1)) and π∗(Ti) = si.

Proof. I refer to [Liu, 2002] for a complete proof. I will here only show how
π is constructed in the proof of part (b) since that is actually an important
part for understanding the proposition. Let Xsi := {x ∈ X | Lx = si,xOX,x}
be the open part of X where si generates L. Then the Xsi cover X and we
can construct π by giving πi = π|Xsi : Xsi → D+(Ti). These πi are given on
global sections as follows:

OPdA
(D+(Ti))→ OX(Xsi), Tj/Ti 7→ sj/si ∈ OX(Xsi)

Degrees and gonality

Now we restrict to the case where X is a projective smooth and geometri-
cally connected curve over a field k. Let ψ : K(P1

k) = k(t)→ K(X) a map of

13



k-algebra’s and f := ψ(t). Let D be the Cartier divisor such that the corre-
sponding Weil divisor [D] = (f)∞ is the pole divisor f and let L = OX(D)
be the invertible sheaf generated by s0 := 1, s1 := f then it is clear that the
two constructions in the previous subsection give the same morphism π. In
this setting we can define the degree of π in several different but equivalent
ways.

Definition / Proposition 2.8. Let X over k be a projective smooth geo-
metrically connected curve and π : X → P1

k be a dominant morphism then
the following integers are equal:

(1) [K(X) : k(t)]

(2) deg (f)∞

(3) degD

(4) degOX(D) = degL := χk(L)− χk(OX)

Where k(t), f and D are as above. The degree of π is defined to be any of
the above integers and is denoted by deg π.

Proof. I will give references to [Liu, 2002] for 3 equalities which will make
everything equal. The equality of (1) and (2) is corollary 7.3.9. The equality
of (2) and (3) is remark 7.3.2 and the equality of (3) and (4) is part a of
lemma 7.3.30.

Recall that we defined the gonality of a curve to be the minimum of the
degrees of all dominant morphisms to the projective line. The definition of
gonality is the simplest in terms of proposition 2.8 part (1) because then we
have3

gon(X) = min
f∈K(X)

[K(X) : k(f)].

Proposition 2.9. Let S = SpecR be the spectrum of a discrete valuation
ring with generic point η and closed point s. Let X be a projective and flat
S-scheme whose fibers are curves and let L be an invertible sheaf on X then
degLk(s) = degLk(η).

Proof. Since X is flat over S we also have that all locally free sheaves on X
are flat over S. In particular OX and L are flat over S and we can use the

3Note that occurrence of non transcendental f in this minimum does not influence the
outcome since non transcendental f they will never give rise to a minimum.
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invariance of the Euler-Poincaré characteristic [see Liu, 2002, prop. 5.3.28]
to get

degLk(s) = χ(Lk(s))− χ(OX,k(s)) = χ(Lk(η))− χ(OX,k(η)) = degLk(s)

Proposition 2.10. Let X be a projective curve over a field k and let 0→ F → G
be an an exact sequence of invertible sheaves. Then degF ≤ deg G

Proof. The statement degF ≤ deg G is equivalent to showing χk(F) ≤ χk(G).
Now remark that we have the exact sequence 0→ F → G → F/G → 0 hence
χk(G) = χk(F)+χk(G/F). So it suffices to show that χk(G/F) ≥ 0, but this
is indeed the case as G/F is a skyscraper sheaf and hence H1(X,G/F) = 0
showing that χk(G/F) = dimkH

0(X,G/F) ≥ 0

2.2 Proof of theorem 2.5 (Gonality under specialisa-
tion)

The idea of the proof is to construct for every dominant morphism π : Xη → P1
k(η)

a dominant morphism Xs → P1
k(s) of smaller or equal degree.

As X is smooth over a regular ring, it is itself regular. Since X is projec-
tive over a discrete valuation ring it is also Noetherian and it is integral be-
cause it is irreducible and reduced. This means we may identify Weil divisors
with Cartier divisors and invertible sheaves, i.e. ClX = CaClX = PicX.
Now Xs is a closed irreducible subscheme of X of codimension 1 whose com-
plement is Xη hence by II.6.5(c) of [Hartshorne, 1977] we have the exact
sequence

Z→ ClX → ClXη → 0.

In other words ClX → ClXη is surjective and hence the corresponding map
PicX → PicXη is also surjective.

Now let π : Xη → P1
k(η) = Proj k(η)[T0, T1] be a dominant morphism then

by surjectivity of PicX → PicXη there is an invertible sheaf F on X such
that Fη = π∗(OP1

k(η)
(1)). By [Liu, 2002, 5.1.20 (a)] we have

dimk(s) H
0(Xs,Fs) ≥ dimk(η) H

0(Xη,Fη)

so since Fη has the two k(η) linearly independent global sections π∗(T0)
and π∗(T1), we see that Fs also has pair of k(s) linearly independent global
sections, let s0, s1 be such a pair. Define L ⊂ Fs to be the sheaf generated
by s0, s1. Now Xs is smooth of relative dimension 1 over the field k(s), so
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the local rings are either a field or a d.v.r. implying that locally either s0 or
s1 generates L so L is invertible. Now let π′ : Xs → P1

k(s) be the morphism
given by L, s0, s1. Since s0 and s1 are linearly independent the morphism π′

is not constant and hence dominant. So the theorem now follows from the
inequality

deg π′ = degL ≤ degFs = degFη = deg π

2.3 How to compute the Fq-gonality of X1(N) in prac-
tice

In this section we give the F2 gonalities of X1(N) for several odd N . We
do this so that theorem 2.5 will give us lower bounds for the Q gonality of
X1(N). These bounds turn out to be surprisingly good in practice. After
that I will explain how I computed these gonalities.

Proposition 2.11. The F2 gonalities of X1(N) for the odd N with N ≤ 31
are as follows:

N gonF2
N gonF2

N gonF2
N gonF2

1 1 9 1 17 4 25 5
3 1 11 2 19 5 27 6
5 1 13 2 21 4 29 11
7 1 15 2 23 7 31 12

Table 2.1: some F2 gonalities

Proof. For N < 17 this follows directly from the tables in [Sutherland, 2012].
It is clear that the curves of gonality at most 1 according to the tables in
Sutherland cannot have lower gonality. The same holds for the curves of
gonality at most 2 since those have nonzero genus.

For the other N the gonalities where computed using Magma. The com-
putations themselves can be found in Appendix A.

In the rest of this section I will explain why the calculations are correct
and what tricks I used to make them fast enough to make them finish before
my graduation deadline.

Theorem 2.12. Let F be a finite field and let C/F be smooth projective
geometrically irreducible curve. Then the F-gonality of C is computable.
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Proof. Let d be a positive integer and define

Sd := {D ∈ divC | D ≥ 0, degD = d} . (2.3.1)

Now gonF C > d if and only if for all D ∈ Sd we have dimH0(C,D) = 1.
The sets Sd are finite. So we can compute the gonality as follows:

Step 1 set d = 1

Step 2 While for all D ∈ Sd : dimH0(C,D) = 1 increase d by 1.

Step 3 Output d.

The above already gives a very slow (but deterministic) way of computing
the F gonality. However even over F2 this brute force way is too slow to be
useful in practice.

Now the main idea to make the computation faster is by exploiting the
automorphisms of C and P1

F. These automorphisms act on the dominant
morphism C → P1

F and this action does not change the degree of the mor-
phism.

Definition 2.13. Let C be a smooth projecitve geometrically irreducible
curve over a finite field F and d an integer. We say that a that a set of
divisors S ⊂ divC dominates all functions of degree ≤ d if for all dominant
f : C → P1

Fp of degree ≤ d there are g ∈ Aut(C), h ∈ Aut(P1
Fp) and D ∈ S

such that div h ◦ f ◦ g ≥ −D.

The idea behind this definition is that as soon that there exists an f : C → P1
Fp

of degree ≤ d that there will then be a D ∈ S such that H0(C,D) contains
a function of degree ≤ d, namely the function h ◦ f ◦ g. So we have the
following proposition.

Proposition 2.14. Suppose that C,F and d are as above and S ⊂ divC
dominates all functions of degree ≤ d then

gonFC ≥ min(d+ 1, inf
D∈S,

f∈H0(C,D),
degf 6=0

deg f).

Now in the calculations for the lower bounds in Appendix A the strategy is
to find an as small as possible set S of which we can show that it dominates
all functions of degree ≤ d while also trying to keep the dimension of the
corresponding Riemann-Roch spaces small enough so that it is still feasible
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to calculate the degree of all functions in the occurring Riemann-Roch spaces.
Upper bounds are just obtained by finding functions of low degree.

The following proposition already gives one way to find a smaller set that
still dominates all functions of degree ≤ d.

Proposition 2.15. Let C be a curve over a finite field Fq and d an integer.
Define n := d#C(Fq)/(q + 1)e and

D =
∑

p∈C(Fq)

p ∈ div(C)

then
Sd−n +D := {s′ +D | s′ ∈ Sd−n}

dominates all functions of degree ≤ d.

Proof. For all f : C → P1
Fq we have f(C(Fq)) ⊆ P1(Fq) so there is always a

g ∈ AutP1
Fq such that g ◦ f has a pole at at least n distinct points in C(Fq).

So suppose that f has degree at most d then there is an element s ∈ Sd−n
such that div g ◦ f ≥ −s−D.

Note that the above trick increases the degree of the divisors we have to
check by #C(Fq)− n. But the upper bounds for the gonality of X1(N)F2 we
get from the tables in [Sutherland, 2012] are often significantly lower then the
genus of X1(N)F2 . For example the genus of X1(29) is 22 while its gonality is
at most 11. So we still expect the dimension of these Riemann-Roch spaces
to be small for divisors of degree slightly larger then the gonality.

The second trick used to make the computations faster is the following.

Proposition 2.16. Let C be a curve over a finite field, d be an integer and
suppose that S dominates all functions of degree ≤ d. Let S ′ ⊂ divC be such
that for all s ∈ S there are s′ ∈ S ′ and g ∈ AutC such that g(s′) ≥ s. Then
S ′ also dominates all functions of degree ≤ d.

Proof. This is by definition of S dominating all functions of degree ≤ d.

This proposition will in particular be useful when C = X1(N)Fq since the
diamond operators will ensure that X1(N)Fq always has nontrivial automor-
phisms if N > 6.
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2.4 Some Q gonalities of X1(N) for small odd N

Now we use the computed F2 gonalities to determine the Q gonalities.

Corollary 2.17. For the odd N with N ≤ 29 the Q-gonality of X1(N) is the
same as the F2 gonality listed in table 2.1 and the Q gonality of X1(31) is 12
or 13.

Note that the Q gonality was already known for N ≤ 22 [see Sutherland,
2012]. And at the moment in fact all gonalities (not just the odd ones) have
been computed for N ≤ 40 in a joint work of Mark van Hoeij and me that
still has to be published.

Proof. For N 6= 25, 27 this follows directly from the gonality calculations over
F2 together with 2.5 and the tables in [Sutherland, 2012]. For N = 25, 27 it
suffices to give maps to P1

Q of degree 5 and 6 respectively since 5 and 6 are the
lower bounds for the Q-gonality that follow from the gonality calculations
over F2.

For N = 25 we can construct a map of degree 5 by noticing that the quo-
tient map to X1(25)Q/〈16〉 has degree 5 since 16 has order 5 in (Z/25Z)∗/ {±1}.
Also X1(25)Q/〈16〉 has genus 0 and a rational point (some of the cusps are
rational) hence it is isomorphic to P1

Q.

sage: G=GammaH(25,[16])

sage: G.genus()

0

For N = 27 we can construct a map of degree 6 by noticing that quotient
the map to X1(27)Q/〈10〉 has degree 3 since 10 has order 3 in (Z/27Z)∗/ {±1}.
Also X1(27)Q/〈10〉 has genus 1 and has a rational point, hence it is an elliptic
curve and its gonality is 2. So composition gives us a map of degree 6 from
X1(27)Q to P1

Q.

sage: G=GammaH(27,[10])

sage: G.genus()

1
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Part II

Torsion Points

3 Introduction

This Part of my thesis will be about studying the existence of torsion points
of prime order over number fields of small degree. Suppose d is an integer and
define the set B(d) to be the set of integers N such that there exist an elliptic
curve E over a number field K with [K : Q] ≤ d and a point P ∈ E(K) of
order N . There is also a related set S(d) which has the same definition except
with the additional condition that N is prime. These sets have already been
studied by a lot of different people. The first result on this was by Mazur
who among other things completely determined B(1) in [Mazur, 1977], in
fact he determined all group structures that occur as E(Q)tors. Later it
was shown that B(d) is finite for several small d giving rise to the so called
uniform boundedness conjecture which states that B(d) is finite for all d. A
first step in proving this conjecture was provided in [Kamienny and Mazur,
1995], there it was shown that for all d we have S(d) is finite if and only
B(d) is finite. Later Merel managed to show that indeed S(d) is always finite
in [Merel, 1996] and hence the uniform boundedness conjecture is also true.
The main goal of this part of my thesis is to study the set S(d) for several
small values of d.

3.1 What is known about S(d)

Let Primes(N) be the set of primes less then or equal to N then the following
is already known about S(d):

S(d) ⊆ Primes((3d/2 + 1)2) ([Oesterlé, not published])

S(1) = Primes(7) ([Mazur, 1977])

S(2) = Primes(13) ([Kamienny, 1992b])

S(3) = Primes(13) ([Parent, 2000, 2003])

S(4) = Primes(17) ([Derickx, Kamienny, Stein, and Stoll])

Table 3.1: Some known bounds on S(d).
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Note that at this moment the article [Derickx et al.] is still in prepa-
ration. And although I will be a co-author of that article the result above
should really be attributed to Kamienny, Stein and Stoll since they already
announced a proof of S(4) = Primes(17) way before I knew anything about
the subject. A large part for calculating S(4) consists of using a computer to
check for a lot of primes p whether the hypotheses of theorem 1.10 of [Parent,
2000] are satisfied showing that for these primes we have p /∈ S(d). Simply
running the same computer calculations for S(5) would take too long, this
is why they did not do it for other d. The main goal of section 5 will be to
make it computationally more efficient to check the hypotheses of theorem
1.10 of [Parent, 2000] so that these techniques can also be used for S(5), S(6)
and S(7).

There are two improvements I will make that will shorten the computation
time needed dramatically. The biggest improvement comes from translating
the work in [Parent, 2000] to the setting of X0(p) so that we can use hecke
operators in TΓ0(p)) instead of TΓ1(p)). Altough it has not been done before
in the exact way I will do it here it is not very original since this is basi-
cally a combination of the tactics used in [Parent, 1999] where Parent uses
X0(p) and [Parent, 2000] where he developed techniques to get around the
difficulties ocurring when reducing modulo 2 4. The second way of speeding
things up is more original and is explained in section 5.5.

Note that one of the conditions for showing p /∈ S(d) using theorem 1.10
of [Parent, 2000] is that p > (ld/2 + 1)2 (here l can be any prime). By being
more carefull in the analysis of what happens when l = 2 I will however
be able to show p /∈ S(d) for some primes p ≤ (ld/2 + 1)2 using the same
techniques as in [Parent, 2000].

Sadly enough [Parent, 2000] contains a small error (see the footnote at
5.8 in this thesis). This mistake affects the calculations done for S(3) but
also for S(4). It will be only a little effort to make the computer also check
whether the hypotheses of theorem 1.10 of [Parent, 2000] are still satisfied
for S(3) and S(4). So I will redo these computations to verify that the same
results about S(d) can still be obtained. To be more precise I will prove the
following theorem.

Theorem 3.1. If max(S(7)) ≤ b(37/2 + 1)2c = 2281 5 then the following
inclusions of sets hold:

4see the text after 5.5 for a short discussion of the difficulties when reducing modulo 2
5This condition will be satisfied if Oesterlé his bound holds. The article of Oesterlé

which should contain a prove of this bound is cited as “article à parâıtre” in [Parent, 1999],
indicating that the article would be published not to far in the future. But since it is now
13 years later it doesn’t look like that this will happen. So I included this condition for
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S(3) ⊆ Primes(17)

S(4) ⊆ Primes(19) ∪ {29}
S(5) ⊆ Primes(19) ∪ {29, 31, 41}
S(6) ⊆ Primes(41) ∪ {73}
S(7) ⊆ Primes(43) ∪ {59, 61, 67, 71, 73, 113, 127}

Table 3.2: Some new bounds on S(d).

Note that these results for S(3) and S(4) are slightly weaker then what
is mentioned in table 3.1. But this is no problem since in the original proofs
for S(3) = Primes(13) and S(4) = Primes(17) there where also some special
cases for which different techniques where needed. These special cases will
also be taken care of in [Derickx et al.]. These techniques can also be used to
improve the results for S(5). In fact it is now known that S(5) = Primes(19)
since Michael Stoll managed to show 29, 31, 41 /∈ S(5). A proof of this will
be given in [Derickx et al.]. The proof that 29, 31, 41 /∈ S(5) uses the gonality
calculations for p = 29 and 31 done in Part I of this thesis.

3.2 Approach

The main idea is to rule out possibilities depending on the type of reduction
an elliptic curve over a number field can have. The reduction type of an
elliptic curve E over a number field K can depend on the model you chose
over OK . So to make the reduction type independent of this choice, we take
the reduction type of a model of E over OK which is equal to its Weierstrass
minimal model at all primes q ∈ OK lying over a fixed prime l ∈ Z. The
different possibilities are listed in the following proposition.

Proposition 3.2. Let K be a number field and l be a prime number. Let
E/K be an elliptic curve and P ∈ E(K) a point of prime order. Then
either there is a prime q ⊂ OK lying over l satisfying one of the following
conditions:

(i) E has good reduction at q

(ii) E has additive reduction at q

the theorem to make explicit how this current gap in the literature affects this theorem.
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(iii) E has non-split multiplicative reduction

(iv) E has split multiplicative reduction at q and P does not reduce to the
singular point.

or

(v) E has split multiplicative reduction at all primes lying over l and P
reduces to the singular point at all these primes.

To be able to formulate the separate results for cases (i−v) independently
we will make the following definition.

Definition 3.3. Let x ∈ {i, ii, iii, iv, v} be one of the cases in proposition

3.2 and l be a prime. Then for an integer d we denote by S
(x)
l (d) the set of

primes p such that there exists an elliptic curve E over a number field K of
degree at most d with a point P of order p satisfying case x of proposition
3.2

It follows directly from the proposition that for all primes l we have
S(d) = S

(i)
l (d)∪S(ii)

l (d)∪S(iii)
l (d)∪S(iv)

l (d)∪S(v)
l (d). So theorem 3.1 follows

from using this equality together with the restrictions on S
(i)
2 (d), . . . , S

(v)
2 (d)

listed in tables 4.2, 4.3 and 5.1 and equation 4.2.1.
Now let l - p be distinct primes, K be a number field of degree d and

P ∈ E(K)[p]. Then the order of the point P stays the same after reduction
at a prime q ⊃ (l), so if we can bound the order of the torsion points on the
reduction of the curve we can also bound it for the curve itself. If we take the
case (i) for example the residue class degree of q (i.e. [OK/q : Fl]) is bounded
above by the degree of K. Now let d := [K : Q] be the degree of K then one

can use the Hasse bound to see that maxS
(i)
l (d) ≤ (ld/2 + 1)2). In particular

we see that l has to be small in order to get a small upper bound. For this
reason primes bigger then 5 are rarely used in the literature, and we will use
l = 2. Now in the case of bad reduction, points reducing to a singular point
give difficulty in this approach since the group structure on the reduction is
only defined for the non-singular points. Luckily there is already theory for
dealing with these difficulties namely the theory of Neron models of elliptic
curves. It turns out that in cases (i)− (iv) it is easy to give an upper bound
on the torsion order depending on l and d. To give a bound for the torsion
order in the (v) case is much more work. How to do this is explained in
section 5. For this we use an approach similar to the one in [Parent, 1999].
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4 Point orders in different types of reduction

4.1 case (i): Good Reduction

Shortly after definition 3.3 we already mentioned how one can use the Hasse
bound to bound maxS

(i)
l (d). The result we obtained there can actually be

slightly improved since not all integers in the Hasse interval have an elliptic
curve corresponding to them. Being as precise as possible we will not only
bound maxS

(i)
l (d) but also try to show that p /∈ S(i)

l (d) for as many primes
p smaller then this bound as possible. Similar to the argument given after
definition 3.3 we will show p /∈ S

(i)
l (d) by showing that there is no elliptic

curve E over a finite field Fq with [Fq : Fl] ≤ d such that p | #E(Fq). For this
we need to know which values #E(Fq) can take for a certain prime power
q. The occurring values are precisely classified by [Waterhouse, 1969, thm.
4.1]. This theorem is stated below.

Theorem 4.1. Let Fq be a finite field with q = la then the set

{#E(Fq) | E/Fq is an elliptic curve}

consists of the integers n with |n−q−1| ≤ 2
√
q satisfying any of the following

conditions.

1. gcd(n− 1, l) = 1

2. If a is even : n = q + 1± 2
√
q

3. If a is even and l 6≡ 1 mod 3 : n = q + 1±√q

4. If a is odd and l = 2 or 3 : n = q + 1± l a+1
2

5. If either a is odd or (a is even and l 6≡ 1 mod 4) : n = q + 1

In the rest of this section we will work with l = 2. This means that the
condition 1 comes down to saying that n is even. So in this case we have
for P ∈ E(Fq) of prime order p with p > 2 that p ≤ n/2 ≤ (2a/2 + 1)2/2.
The set of special cases (2− 5) is very small hence the lowering of the bound

(2a/2 + 1)2 by a factor 2 in case 1 will allow us to show p /∈ S(i)
l (d) for quite

some primes in the range between (2a/2 +1)2/2 and (2a/2 +1)2. Table 4.1 lists
which primes occur as a divisor of #E(F2a) for a some elliptic curve E/F2a .
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a primes dividing #E(F2a) for some E/F2a

1 Primes(5)
2 Primes(7)
3 Primes(7) ∪ {13}
4 Primes(17)
5 Primes(19) ∪ {41}
6 Primes(19) ∪ {29, 31, 37, 73}
7 Primes(37) ∪ {43, 59, 61, 67, 71, 73, 113}

Table 4.1:

Remark. Table 4.1 is not an increasing list with respect to inclusion. For
example 41 occurs for a = 5 but not for a = 6 or a = 7. So although 41
doesn’t occur for a = 6 we cannot rule out the existence of a number field
K of degree 6 with a prime q ⊆ OK lying over 2 with at which the elliptic
curve has good reduction because 2OK might split as q · r where q, r ⊂ OK

are primes residue class degree 1 and 5 respectively.

From table 4.1 one can obtains the restrictions on S
(i)
2 (d) listed in table

4.2.

S
(i)
2 (3) ⊆ Primes(7) ∪ {13}
S

(i)
2 (4) ⊆ Primes(17)

S
(i)
2 (5) ⊆ Primes(19) ∪ {41}
S

(i)
2 (6) ⊆ Primes(19) ∪ {29, 31, 37, 41, 73}
S

(i)
2 (7) ⊆ Primes(43) ∪ {59, 61, 67, 71, 73, 113}

Table 4.2: Some bounds on S
(i)
2 (d).

4.2 case (ii) − (iv): Additive and Some Multiplicative
Reduction

The following proposition shows how big the order of the point P can be
with respect to the prime of reduction l in cases (ii)− (iv) of 3.2.
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Proposition 4.2. Let E be an elliptic curve over a number field K and l ∈ Z
prime q ⊂ OK is a prime lying over l with residue field k of degree f over Fl
and P ∈ E(K) a point of prime order p. If the elliptic curve has

(ii) additive reduction then p = 2, 3 or l,

(iii) non-split multiplicative reduction then p = 2, l or p | (lf + 1),

(iv) split multiplicative reduction and P reduces to a non-singular point then
p = l or p | (lf − 1)

Proof. Let Kq be the completion of K with respect to q and R ⊂ Kq

its ring of integers. Let E denote the Neron model over R of EKq and

Ẽ := E ×SpecR Spec k its special fiber and Ẽ0 be the identity component
of the special fiber. Now in all three cases p = l is a case of which we do
not need to show that it is impossible, so we can assume p 6= l and hence
that E(K)[p] will inject into Ẽ(k). Now the group scheme Ẽ sits in an exact
sequence

0→ Ẽ0 → Ẽ → Φ→ 0

Where Φ is the component group of Ẽ . And since the Hom(k, ) functor is
left exact we get an exact sequence of groups

0→ Ẽ0(k)→ Ẽ(k)→ Φ(k)

Hence p | #Ẽ0(k) or p | #Φ(k) and we can apply this to the three different
cases.

In the additive case Ẽ0(k) ∼= k and #Φ(k) ≤ 4 so p = 2, 3.
In the non-split multiplicative case #Ẽ0(k) = #k + 1 and #Φ(k) ≤ 2 so

p = 2 or p | (lf + 1).
In the split multiplicative case we cannot say anything about #Φ(k), but

in case (iv) the point P reduces to a non singular point so we know that it spe-
cializes to a point in the identity component hence p | #Ẽ0(k) = #k∗ = lf−1.

It directly follows from this proposition that

S
(ii)
2 (d) ⊆ {2, 3} (4.2.1)

for all d. Bounds for S
(iii)
2 (d) and S

(iv)
2 (d) can also be obtained by determining

the divisors of p | 2e + 1 resp. p | 2e − 1 for all e ≤ d. The results are given
in the following table:
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S
(iii)
2 (3) ⊆ Primes(5)

S
(iii)
2 (4) ⊆ Primes(5) ∪ {17}
S

(iii)
2 (5) ⊆ Primes(11) ∪ {17}
S

(iii)
2 (6) ⊆ Primes(17)

S
(iii)
2 (7) ⊆ Primes(17) ∪ {43}
S

(iv)
2 (3) ⊆ {2, 3, 7}
S

(iv)
2 (4) ⊆ Primes(7)

S
(iv)
2 (5) ⊆ Primes(7) ∪ {31}
S

(iv)
2 (6) ⊆ Primes(7) ∪ {31}
S

(iv)
2 (7) ⊆ Primes(7) ∪ {31, 127}

Table 4.3: Some bounds on S
(iii)
2 (d) and S

(iv)
2 (d).

5 A new version of Kammienny’s Criterion

over F2

In the literature there are already several ways of dealing with the case we
have not treated yet, namely case (v) of 3.2. Mazur gave two different ap-
proaches in [Mazur, 1977] and [Mazur, 1978] for elliptic curves over Q. Kami-
enny generalized a part of Mazurs approach to number fields of a bounded
degree in [Kamienny, 1992a], where he reduced everything to a question
about certain Hecke operators being linearly independent, this linear inde-
pendence question is now known as “Kamienny’s criterion”. Ways of dealing
with case (v) as well as several variations of Kamienny’s criterion can be
found in [Merel, 1996], [Oesterlé, not published], [Parent, 1999] and [Parent,
2000]. In this section I will explain the common part of these approaches as
well as well as giving a generalisation of the version of Kamienny’s criterion
that is found in [Parent, 2000].

The general strategy of dealing with case (v) of proposition 3.2 is as
follows.

Step 1 Suppose for contradiction that there exists a pair (E,P ) where E is an
elliptic curve over a number field K of degree d and P is a point of prime
order p and let l be a prime such that his data together satisfies (v).
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Step 2 Use the pair (E,P ) to construct a point s ∈ X0(p)(d)(Q) such that

sFl =∞(d)
Fl .

Step 3 Construct a map f : X0(p)(d) → A for some abelian variety A such that
f(s) = f(∞(d)).

Step 4 Use a variation of Kamienny’s criterion to check whether f is a formal
immersion at ∞(d)

Fl . If f is indeed a formal immersion then this implies

s = ∞(d) contradicting the assumption in Step 1. As a conclusion we
get that such a pair (E,P ) does not exist, i.e. that p /∈ S(v)

l (d)

The different versions of Kamienny’s criterion come from taking different
choices for the abelian variety A and different choices of the map f . Note
that as in [Parent, 2000] one can also use the pair (E,P ) to construct a
point s ∈ Xµ(p)(d)(Q) instead of X0(p)(d)(Q) and modify steps 2, 3 and 4
accordingly. This approach requires a little more work, and a little more
notation to formulate. This is why I formulated it in this overview only for
X0(p) since formulating it for Xµ(p) would just be distracting. The road
we will take in the rest of this section however is expressing everything in
terms of XH which is a quotient of Xµ(p), where H can be any subgroup of
(Z/pZ)∗/ {±1}. Although this also gives the same complication in notation
as for Xµ(p) we really do need this since I will need to be able to also state
Kamienny’s criterion for Xµ(p) as in [Parent, 2000] for section 5.5.

5.1 Step 2

Throughout this part d will be an integer, l 6= p two distinct primes with
p > 4, K a number field of degree d, E an elliptic curve over K and E its
Néron model over OK and P ∈ E(K) a point of prime order p such that these
data together satisfy condition (v) of 3.2. This means that at all primes in
OK lying over l the elliptic curve E has split multiplicative reduction and P
does not reduce to the identity component of the Néron model. Furthermore
we will denote E ′ := E/〈P 〉 and β : µp → E ′ the closed immersion sending
µp to kernel of the dual isogeny of E → E ′. Now let q ⊂ OK be a prime
lying over l with residue field k. Since the order of P is coprime to l its
specialization Pk ∈ Ek will also have order p. The special fiber at k of E will
be a Néron np-gon for a certain n hence the Deligne-Rapoport specialisation
of the generalized elliptic curve corresponding to E will be a Néron p-gon.
So the generalized elliptic curve over OK [1/p] corresponding to (E ′, β) will
specialize to a Néron 1-gon at q. Rephrasing this in terms of points on Xµ(p)
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and X0(p) this means that if s ∈ Xµ(p)(OK) 6 is the point coming from the
pair (E ′, β) then the image of s in X0(p)(OK) will specialize to ∞Fl . This
proves the following proposition.

Proposition 5.1. Let p > 4 be prime and H be a subgroup of (Z/pZ)∗ {±1}.
If there exists an elliptic curve E over a number field K of degree d, a point
P ∈ E(K) of order p and a prime l 6= p which together satisfy (v) of 3.2 then
there is a non cuspidal sH,l ∈ XH(p)(OK) whose image in X0(p) specializes
to ∞k for all residue fields k of OK of characteristic l.

The next step is to make the above statement independent of the number
field K by using the symmetric product. Let τ1, . . . , τd be all embeddings of
K into C and sH,l be as in the previous proposition then

s
(d)
H,l := τ1(sH,l) + · · ·+ τd(sH,l) ∈ XH(p)(d)(Q)

because it is invariant under the action of the absolute Galois group of Q. The
proposition and the fact that the cusps of XH(p) lying above ∞ ∈ X0(p)(Z)

are defined over Z make sure we can write s
(d)
H,l,Fl = n0σ0,Fl + . . .+niσi,Fl with

the σ0, . . . , σi pairwise distinct cusps in XH(p)(Z) lying above infinity and
n0 ≥ . . . ≥ ni ≥ 1 a sequence integers that sum to d. This shows that we
can make the following definition.

Definition 5.2. Let d be an integer, n0 ≥ n1 ≥ . . . ≥ ni ≥ 1 a sequence of
integers that sum to d and σ0, . . . , σi pairwise distinct cusps in XH that lie
above ∞ ∈ X0, then we call n0σ0 + . . . + niσi an ordered sum of XH(p)
cusps (of degree d). Also if l is a prime, sH,l as in 5.1 and

s
(d)
H,l,Fl = n0σ0,Fl + . . .+ niσi,Fl

then we call n0σ0 + . . . + niσiXH(p)(d)(Z) the (ordered) sum of cusps

associated to s
(d)
H,l,Fl .

Remark. If XH(p) = X0(p) there is only one ordered sum of cusps that
lie above infinity of degree d, namely d∞. Hence in this case we have
sH,l,Fl = d∞Fl .

6We can put OK here instead of OK [1/p] here since Xµ(p) and X0(p) are projective
over Z
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5.2 Step 3

5.2.1 The winding quotient

Integration gives us a map

H1(XH(C), cusps,Z)→ homC(H0(XH(C),Ω1),C) ∼= H1(XH(C),R).

By a theorem of Manin and Drinfeld the image of this map is contained in
H1(XH(C),Q). Let {0,∞} ∈ H1(XH(C), cusps;Z) be the element coming
from a path from 0 to i∞ in the complex upper half plane.

Definition 5.3. The element e := ω 7→
∫
{0,∞} ω ∈ H1(XH(N),Q) is called

the winding element and the corresponding ideal Ae := Ann(e) ⊆ T consist-
ing of the elements annihilating e is called the winding ideal. The quotient
JeH := JH/AeJH is called the winding quotient.

The most important property of the winding quotient that we will use is
the following.

Theorem 5.4. The rank of JeH(Q) is 0.

In [Parent, 1999] this theorem is proved for Je0(N) using a result from
[Kolyvagin and Logachëv, 1989]. This result states that an abelian variety
A over Q that is a quotient of J0(N)Q has Mordel-Weil rank 0 if its analytic
rank is zero. The result of Kolyvagin and Logachev was generalized by Kato
[see Kato, 2004, cor. 14.3] to abelian varieties that are a quotient of J1(N)Q.
The theorem follows from using Kato’s generalization in Parents proof. I will
give here a short sketch of this proof.

Proof. Since we can view JeH,Q as a quotient of Jeµ(N)Q it suffices to prove
the theorem only for Jeµ(N)Q. The isomorphism WN : Xµ(N) → X1(N) is
defined over Q and interchanges the cusp 0 with ∞ so this isomorphism
sends the winding ideal to the winding ideal hence we get an isomorphism
Jeµ(N)Q ∼= Je1(N)Q. So instead of working with the alternate model Xµ(N)
and its Jacobian we can also work with X1(N).

The Hecke algebra TQ viewed as sub algebra of the endomorphism ring
of S2(Γ1(N))Q can be written as

TQ := Rf1 ×Rf2 . . .×Rfk

where the fi range over all Galois orbits of newforms for Γ1 of level Mi

dividing N and Rfi is the restriction of TQ to the subspace Efi of S2(Γ1(N))Q
consisting of all elements that can be written as linear combinations of the
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Galois conjugates of Bd(fi) with d | N/Mi [see Parent, 1999, thm. 3.5] .
Now let M be an integer that divides N and d an integer dividing N/M then
degeneracy map Bd : X1(N) → X1(M) give rise to B∗d : J1(M)Q → J1(N)Q
and we can define J1(N)newQ := J1(N)Q/ΣM |N,d|M/N imB∗d . And we can use
the maps Bd,∗ : J1(N)Q → J1(M)Q to define a map of abelian varieties

Φ: Jµ(N)Q → ⊕M |N ⊕d|N/M Jµ(M)newQ .

Now the identification

S2(Γ1(N))C ∼= H0(X1(N)C,Ω
1) ∼= H0(J1(N)C,Ω

1) ∼= cot0(J1(N)C

together with the isomorphism ⊕M |N ⊕d|N/M S2(Γ1(M))newC → S2(Γ1(M))newC
show that ΦC is an isogeny, so Φ is one also. We also have an isogeny
J1(M)new → ⊕Jf where f runs over the Galois orbits of newforms in S2(Γ1(N)
and Jf is the abelian variety attached to such a Galois orbit. Combining these
isogenies with Φ we get an isogeny

J1(N)Q →
⊕
i

⊕
d|N/Mi

Jfi,Q.

where the fi range over all Galois orbits of newforms for Γ1 of level Mi

dividing N . Define Rfi as ⊕i 6=jRfj then the product ⊕d|N/Mi
Jfi,Q will be

isogenous to J1(N)Q/R
fiJ1(N)Q.

Now Parent shows that if the integration pairing 〈e, fi〉 6= 0 that then
Ae,Q ∩Rfi = 0 and conversely that if 〈e, fi〉 = 0 Ae,Q ∩Rfi = Rfi . Now since
L(fi, 1) = 2π〈e, fi〉 we can write

Ae,Q =
⊕

i:L(fi,1)=0

Rfi .

Combining this with the previous discussion we get an isogeny

Je1(N)→
⊕

i:L(fi,1)6=0

Je1(N)/RfiJe1(N)→
⊕

i:L(fi,1) 6=0

⊕d|N/Mi
Jfi,Q

where the latter product has rank 0 by Kato’s theorem.

5.2.2 Using the winding quotient to make maps as in step 3

We can use the above theorem to construct maps f : XH(p)(d) → A for some

abelian variety A such that f(s
(d)
H,l) = f(σ) where sH,l is as in proposition 5.1

and σ is the ordered sum of cusp associated to s
(d)
H,l,Fl . The most straightfor-

ward way is the following:
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Corollary 5.5. Let l 6= 2 be a prime and let f : XH(p)(d) → Je0(p) be the

canonical map normalized by f(σ) = 0 then f(s
(d)
H,l) = f(σ) = 0

Proof. Because JeH(N)(Q) has rank 0 we know that f(sH,l) is torsion. Be-
cause l 6= 2 we know that the torsion of JeH(N)(Q) injects into JeH(N)(Fl).
So because s

(d)
H,l,Fl = σFl we have that f(s

(d)
H,l) = f(σ)Fl = 0 and hence

f(s
(d)
H,l) = 0.

An approach similar to this one is taken using l = 3 in [Oesterlé, not
published] to obtain formulas depending on the degree d that bound the
order of a torsion point of prime order over a number field of degree d and
l = 3, 5 in [Parent, 1999] to bound the order of points of prime power order.

However since the upper bounds in cases (i) trough (iv) of proposition
3.2 are better for smaller l one would really like to use l = 2. There are two
difficulties when l = 2. The first one is that it is not necessarily true that the
JeH(N)(Q) injects into JeH(N)(F2). And the second one arises during Step
4, because the exact sequence that relates cot JeH(N)Fl to cot JH(N)Fl is not
necessarily exact anymore. In [Parent, 2000] there is already a way of dealing
with these difficulties when using Xµ(N). I will generalize his approach so
one can use XH(N). The main reason for this is computational one, since
it is more efficient to compute with for example X0(N) compared to X1(N).
So for Step 3 we instead use the following corollary.

Corollary 5.6. Let l be a prime, sH,l ∈ XH(p)(K) be as in proposition 5.1,

σ the ordered sum of cusps associated to s
(d)
H,l and let f : XH(p)(d) → JH(p)

be the canonical map normalized by f(σ) = 0. Take t1, t2 ∈ T such that
t1 : JH(p)→ JH(p) factors via JeH(p) and t2 = 1 if l 6= 2 and if l = 2 then t2
is such that it kills all µ2 embeddings in JH(p)Z[1/p]. Then

t2 ◦ t1 ◦ f(sH,l) = t2 ◦ t1 ◦ f(σ) = 0

.

Proof. Because JeH(N)(Q) has rank 0 we know that t1 ◦ f(s
(d)
H,l) is torsion.

Since we have s
(d)
H,l,Fl = σFl we have t1 ◦ f(s

(d)
H,l,Fl) = t1 ◦ f(σFl) = 0 hence if

l 6= 2 the injectivity of Je0(N)(Q) ↪→ Je0(N)(Fl) allows us to conclude that

t1 ◦ f(s
(d)
H,l) = 0 and we are done. If l = 2 then [Parent, 2000, prop. 1.7] tells

us that either t1 ◦ f(s
(d)
H,l) = 0 in which case we are done or t1 ◦ f(s

(d)
H,l) is a

µ2 embedding, in which case t2 ◦ t1 ◦ f(s
(d)
H,l) = 0 and we are also done.

The operator t2 as in the above corollary can be obtained using the fol-
lowing proposition.
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Proposition 5.7. Let p and q be two distinct primes then (Tq−〈q〉−q)(Q) = 07

for all Q ∈ JH(p)(Q) with Q torsion of order coprime to q.

Proof. LetQ ∈ JH,Z[1/p]
(p)(Q) be torsion of order coprime to q, then (Tq−〈q〉−q)(Q)

is also a point of order coprime to q. Now let QFq ∈ JH(p)Fq(Fq) be its spe-
cialisation and let Frobq be the Frobenius on JH(p)Fq and Verq its dual (ver-
schiebung). Then we have the Eichler-Shimura relation Tq,Fq = 〈q〉Frobq + Verq
[see Diamond and Im, 1995, p. 87] and Verq ◦Frobq = q in EndFq(JH(p)Fq).
So

Tq,Fq(QFq) = Frobq(QFq) + 〈q〉Verq(QFq) = 〈q〉QFq + qQFq

giving (Tq,Fq−〈q〉−q)(QFq) = 0. Since specializing a point on a group scheme
can only change its order by a power of the characteristic of the residue field
we see that the order of (Tq−〈q〉− q)(Q) must be a power of q, and coprime
to q at the same time hence (Tq − 〈q〉 − q)(P ) = 0

So what we need now is to find a way to find Hecke operators t1 as in the
previous corollary. Now suppose if t1 ∈ T is such that t1Ae = 0 then t1 is a
Hecke operator such that t1 : JH(p) → JH(p) factors via JeH(p). So Lemma
1.9 of [Parent, 1999] already gives a way of finding such Hecke operators for
Jµ(p) as soon as we have found an element t that generates the Hecke algebra
TQ. The Hecke algebra TQ is of prime level and weight 2 so it is a product
of number fields. In particular we know that such a t exists. By just trying
“random” elements we should probably find such a t reasonably fast. But
testing whether t is a generator requires calculating its minimal polynomial,
which is a computationally expensive task if t is represented by a huge matrix,
so we don’t want to try many different t. Therefore we generalize his Lemma
slightly such that we don’t need t to be a generator.

Proposition 5.8. Let t ∈ TΓH be an element and let P (X) =
∏n

i=1 Pi(X)ei

its factorized characteristic polynomial when viewing t as an element of EndS2(Γ1(N))Q.
Define

I := {i ∈ {1, . . . , n} | P/P ei
i (t)e = 0 or ei > 1}

then t1(t) :=
∏

i∈I P
ei
i (t) is such that t1Ae = 0.

Proof. We have already seen that the Hecke algebra TΓH ,Q viewed as sub
algebra of the endomorphism ring of S2(ΓH)Q can be written as

TΓH ,Q := Rf1 ×Rf2 . . .×Rfk

7This is slightly different from [Parent, 2000, prop. 1.8], in that proposition it should
also read aq := Tq−〈q〉−q. The mistake in that paper comes from Parent using the Eichler-
Shimura relation for the X1(N) model of X1(N) while in his article he is only working
with the Xµ(N) model. For more details on the Eichler-Shimura relations corresponding
to the different models see page 87 of [Diamond and Im, 1995]
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where the fi range over all Galois orbits of newforms for ΓH of level Mi

dividing N and the Rfi are the restriction of TΓH ,Q to certain subspaces Efi
of S2(ΓΓH ,Q)Q. And we have also seen that Ae,Q = ⊕i:L(fi,1)=0Rfi . Now define
Ee := ⊕i:L(fi,1)=0Efi and E⊥e := ⊕i:L(fi,1)6=0Efi then S2(ΓH)Q = Ee ⊕ E⊥e and
Ae,Q :=

{
t′ ∈ TQ | t′|E⊥e = 0

}
so in particular t1Ae,Q = 0 if t1|Ee = 0. So

it suffices to show that t1|Efi = 0 for all i such that L(fi, 1) = 0. Now all
Ei are contained in some generalized eigenspace corresponding to the factor
P
eji
ji

for some ji depending on i. Now for the i such that eji > 1 we have

P
eji
ji

(t)|Efi = 0 so t1|Efi = 0. For the other i we have eji = 1 and in particular
Efi = kerPji(t) so that we have P/Pji(t) ∈ Ri, now L(fi, 1) = 0 implies
P/Pji(t)e = 0 hence ji ∈ I and hence t1|Efi = t1|kerPji (t)

= 0

5.3 step 4

The goal of this section is to define what a formal immersion is and give
a criterion that implies that the map t2 ◦ t1 ◦ f : XH(p)(d) → JH(p) as in
corollary 5.6 is a formal immersion at σFl . To be precise we will prove the
following variant of Kamienny’s Criterion which is a slight generalization of
the variant that can be found as [Parent, 2000, prop. 2.8].

Proposition 5.9 (Kamienny’s Criterion). Let σ = n0σ0 + . . . + nkσk be
an ordered sum of cusps of XH(p) of degree d such that the σi all lie above
∞ ∈ X0(p). Let 〈d0〉, . . . , 〈dk〉 ∈ (Z/pZ)∗/ {±1} /H be the diamond opera-
tors such that σ0 = 〈di〉σi. Let f : XH(p)(d) → JH(p) be the canonical map
normalized by f(σ) = 0 and let t ∈ TΓH then t ◦ f is a formal immersion at
σFl if and only if the d Hecke operators

(t〈di〉Tj) i∈0,...,k
j∈1,...,ni

are Fl linearly independent in TΓH ⊗ Fl.

Before we proof this proposition we first develop the theory necessary to
prove it.

5.3.1 Formal Immersions

Definition / Proposition 5.10 (Formal Immersion). Let φ : X → Y be a
morphism of noetherian schemes and x ∈ X be a point which maps to y ∈ Y .
Then φ is a formal immersion at x if the two following equivalent conditions
hold:

• the induced morphism of the complete local rings φ̂∗ : ÔY,y → ÔX,x is
surjective.
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• The maps φ : k(y) → k(x) and φ∗ : coty(Y ) → cotx(X) are both sur-
jective.

Proof. It is clear that the first condition implies the second. The other impli-
cation can be proved by using Nakayama’s lemma to lift a basis of coty(Y ) to

a set of generators f1, . . . , fn of my, the maximal ideal of ÔY,y. The fact that

φ̂∗(f1), . . . , φ̂∗(fn) generate mx/(m
2
x) implies that φ̂∗(f1), . . . , φ̂∗(fn) also gen-

erate mx, as a consequence we get that for i the map mi
y/m

i+1
y → mi

x/m
i+1
x

is surjective, hence by the completeness of ÔY,y we also have that φ̂∗ is sur-
jective.

There is one important property of formal immersions that we will use
and that is the following.

Proposition 5.11. Let X, Y be noetherian schemes. Let R be a discrete
valuation ring, m be its maximal ideal and k = R/m be its residue field.
Suppose φ : X → Y is morphism of schemes that is a formal immersion
at a point x ∈ X(k) and suppose P,Q ∈ X(R) are two points such that
x = Pk = Qk and f(P ) = f(Q). Then P = Q.

Proof. Let y = f(x) and view P,Q as morphisms SpecR → X and hence
write f ◦P instead of f(P ). The morphisms P,Q and f induce maps on the
local rings, call these P ∗m, Q

∗
m and f ∗x respectively:

R OX,x OY,y

R̂ ÔX,x ÔY,y

f∗x

P ∗m

Q∗m

f̂∗x

P̂ ∗m

Q̂∗m

Since f ◦P = f ◦Q we also know that P̂ ∗m ◦ f̂ ∗x = Q̂∗m ◦ f̂ ∗x . Now f is a formal

immersion at x. This means f̂ ∗x is surjective and hence that P̂ ∗m = Q̂∗m. Now

since R→ R̂ is injective we also get P ∗m = Q∗m. The proposition now follows
from the following commuting diagrams:

X

SpecR SpecOX,x
Pm

P

X

SpecR SpecOX,x
Qm

Q
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This proposition will be applied later in the setting of 5.6 with P = s
(d)
H,l

and Q = σ to show s
(d)
H,l = σ.

5.3.2 Proof of 5.9 (Kamienny’s Criterion)

The general proof for this proposition involves some slightly more involved
notation then the proof for the case XH = X0(p). However all the main ideas
are already in the proof for the case XH = X0(p). So for better understand-
ability we will prove the criterion only for X0(p). For a full proof of the
proposition one can just check that the proof of proposition 2.8 in [Parent,
2000] given for the case XH = Xµ(p) copies over verbatim to this slightly
more general situation. In proving the main result of this thesis (theorem
3.1) I only used the criterion 5.9 with either XH = Xµ(p) or XH = X0(p).

First we restate the proposition 5.9 in the case XH = X0(p) since the
proposition itself also becomes easier.

Proposition 5.12. Let f : X0(p)(d) → J0(p) be the canonical map normalized
by f(∞(d)) = 0 and let t be a Hecke operator then t◦f is a formal immersion

at ∞(d)
Fl if and only if the d Hecke operators

T1t, . . . , Tdt

are Fl linearly independent in TΓ0(p) ⊗ Fl.

Proof. We have k(t ◦ f(∞(d)
Fl )) = k(0Fl) = Fl = k(∞(d)

Fl ) so we only need to
check that the linear independence criterion is equivalent to

(t ◦ f)∗ : cot0Fl
(J0(p))→ cot∞d

Fl
X0(p)(d)

being surjective.
Now let q be the standard formal coordinate at∞Zl . Then ÔX0(p),∞Zl

= Zl[[q]].
Let qi denote the formal coordinate at ∞d

Zl corresponding to the i-th factor
of X0(p)dZl then

Ô
X0(p)(d),∞(d)

Zl
= Zl[[q1, . . . , qd]]

Sd = Zl[[σ1, . . . , σd]]

where σ1 = q1 + · · · + qd, σ2 = . . . and σd = q1q2 · · · qd are the elementary
symmetric functions in q1, . . . , qd. So we see that dσ1, . . . , dσd form an Zl
basis of cot∞(d)

Zl
X0(p)(d).

Let F : X0(p) → J0(p) be the canonical map normalized by F (∞) = 0

then the isomorphismH0(X0(p)Zl ,Ω
1)

(F ∗)−1

−−−−→ H0(J0(p)Zl ,Ω
1)→ cot0Zl

(J0(p))
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allows us to associate to an element ω ∈ cot0Zl
(J0(p)) the q-expansion of

F ∗(ω) on X0(p)Zl . In fact this q-expansion determines ω uniquely. For an
element ω ∈ cot0Zl

(J0(p)) we denote this q-expansion by
∑∞

i=1 ai(ω)qidq/q.

Now let π : X0(p)d → X0(p)(d) be the canonical map then

π∗((t ◦ f)∗(ω)) = π∗ ◦ f ∗(tω) =
d∑
i=1

∞∑
n=1

an(tω)qni dqi/qi =

=
∞∑
n=1

an(tω)dsn/n ∈ H0(X0(p)dZl ,Ω
1)

where sn =
∑d

i=1 q
n
i . Now for ease of notation define σn = 0 for all n > d.

Then Newtons identities give for all n ≥ 0:

sn − σ1sn−1 + σ2sn−2 − . . .+ (−1)n−1σn−1s1 = (−1)n−1nσn.

Since for n ≥ 2 and 1 ≤ i ≤ n − 1 we have d(σisn−i) = 0 in cot∞d
Zl
X0(p)(d)

we get for n ≥ 1 that dsn/n = (−1)n−1dσn where the latter is zero if n > d.
In particular we see that

(t ◦ f)∗(ω) =
d∑

n=1

an(tω)(−1)n−1dσn =

=
d∑

n=1

a1(Tntω)(−1)n−1dσn in cot∞(d)
Zl
X0(p)(d).

Reducing mod l shows that this relation also holds in cot∞(d)
Fl
X0(p)(d). Now

since we can identify

S2(Γ0(p),Fl) ∼= H0(X0(p)Fl ,Ω
1) ∼= cot0Fl

(J0(p))

and the pairing
S2(Γ0(p),Fl)× (TΓ0(p) ⊗ Fl)→ Fl

given by (f, t′) 7→ a1(t′f) is perfect we also see that the pairing

cot0Fl
(J0(p))× (TΓ0(p) ⊗ Fl)→ Fl

given by (ω, t′) 7→ a1(t′ω) is perfect. This means that if T1t, . . . Tdt ∈ TΓ0(p)⊗Fl
are Fl linearly independent then we can find ω1, . . . , ωd ∈ cot0Fl

(J0(p)) such
that (t ◦ f)∗(ωi) = dσi. So we have shown one direction of the if and only
if statement. The other direction is also clear, any linear relation between
T1t, . . . Tdt will also give a linear relation between

a1(T1tω)(−1)1−1, . . . , a1(Tntω)(−1)n−1

that holds for all ω ∈ cot0Fl
(J0(p)).

37



5.4 Putting it all together

Having completed all steps in the previous sections we can put them together
to obtain the following version of Kamienny’s criterion that helps us rule out
case (v) of 3.2.

Theorem 5.13. Let l, p be distinct primes, d an integer and H ⊆ (Z/pZ)∗/ {±1}
be a subgroup. Suppose that for all partitions d = n0 + · · ·+ nk with

n0 ≥ n1 ≥ · · · ≥ nk

and all sets of pairwise distinct elements 〈d0〉, . . . , 〈dk〉 ∈ (Z/pZ)∗/ {±1} /H
there are Hecke operators t1 and t2 in TΓH as in 5.6 (i.e. t1Ae = 0 and if
l = 2 then t2 kills all µ2 immersions in JH) and that the d elements

(t1t2〈di〉Tj) i∈0,...,k
j∈1,...,ni

(5.4.1)

considered as elements TΓH⊗Fl are Fl linearly independent. Then p /∈ S(v)
l (d).

Note that we switched some quantifiers with respect to theorem 1.10 of
[Parent, 2000]. In that version the t1 and t2 are not allowed to depend on
the partition of d and the 〈di〉 while in this criterion they are allowed to
depend on this. Further on we will not need this slightly stronger version of
the theorem but this slight change of formulation might be useful if someone
wants to check this criterion in other cases.

As an example I describe the easiest case, namely whenH = (Z/pZ)∗/ {±1}.

Example 1. Suppose that there are Hecke operators t1 and t2 in TΓ0 as in
5.6 such that the d elements

t1t2T1, . . . , t1t2Td

considered as elements in Γ0⊗Fl are Fl linearly independent. Then p /∈ S(v)
l (d).

In this example there is only 1 linear independency that we have to check.
While in the case H = 1 there will be many. This means that when actually
verifying the criterion we would much rather use H = (Z/pZ)∗/ {±1} than
H = 1. This works in a lot of cases but sometimes we really have to use
H = 1 because H = (Z/pZ)∗/ {±1} does not work. A way of making it
computationally faster to check the criterion in the case H = 1 will therefore
be discussed in the next section. But first we will prove the theorem.
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Proof. Suppose for all partitions of d and all choices of 〈di〉 that there are t1
and t2 such that the d elements in equation 5.4.1 are Fl linearly independent.
And assume for contradiction that also p ∈ S(v)

l (d). Now let E be an elliptic
curve over a number field K of degree d and P ∈ E(K) a point of order p sat-
isfying (v) of proposition 3.2 and sH,l ∈ XH(OK) the point coming from the
pair (E,P ) as in proposition 5.1. Also let σ = n0σ0 +. . .+niσi be the ordered

sum of cusps associated to s
(d)
H,l,Fl and f : XH → JH be the canonical map nor-

malized by f(σ) = 0. Then by 5.6 we have t1 ◦ t2 ◦ f(s
(d)
H,l) = t1 ◦ t2 ◦ f(σ).

Now let 〈d0〉, . . . , 〈dk〉 be as in proposition 5.9. Because the linear indepen-
dence criterion is satisfied we get that t1 ◦ t2 ◦ f is a formal immersion at σFl ,

but this means that s
(d)
H,l = σ contradicting the fact that s

(d)
H,l comes from an

elliptic curve with a point of order p. So p /∈ S(v)
l (d).

5.5 Making Kamienny’s criterion for Xµ(p) faster

As we have already seen Kamienny’s criterion for Xµ(p) requires the testing
of a lot of linear independence relations while Kamienny’s criterion for X0(p)
requires testing only 1 linear independence relation. To be more precise what
we mean by a lot, suppose that d is the degree and p is the torsion order
for which we want to check the Kamienny’s criterion and we only consider
the ordered sums of cusps n0σ0, . . . , niσi where the multiplicities n0, . . . , ni
are all equal to 1 (hence i = d− 1) then there are already

(
(p−3)/2
d−1

)
different

linear independencies we need to verify. So when doing actual computations
using a computer we rather use X0(p) instead of Xµ(p) whenever possible. It
turned out while doing the explicit computations that the X0(p) version of
the criterion sometimes fails for primes which are too big to make it practical
to just try the Xµ(p) criterion for all possible ordered cups sums. For exam-
ple I was unable to find t1 and t2 such that the X0(p) version of the criterion
was satisfied for d = 7 and p = 193. In this case the Xµ(p) version would re-
quire verifying more than 869 million linear independencies and the matrices
involved are 1457 by 1457. But luckily we can do something smarter.

We again restrict our attention to the ordered sums of cusps n0σ0+· · ·+niσi
where the multiplicities n0, . . . , ni are all equal to 1. Checking Kamienny’s
criterion for all these sums of cusps comes down to checking whether

T1〈d0〉t, . . . , T1〈di〉t

are linearly independent for each set of pairwise distinct diamond operators
〈d0〉, . . . , 〈di〉 where the first one is the identity. However, equivalently we can
also check that all linear dependencies over Fl between the Hecke operators
T1〈1〉t, . . . , T1〈(p−1)/2〉t involve at least d+1 nonzero coefficients. It turned
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out that the dimension of this space of linear dependencies was often zero
or of very low dimension, so it takes no time at all to use a brute force
approach and just calculate the number of nonzero coefficients of all linear
dependencies. The following lemma generalizes this example to the case
where the n0, . . . , ni are not necessarily equal to 1. This trick makes it more
feasible to check the Xµ(p) version of the criterion on the computer.

Lemma 5.14. Let d be an integer and t ∈ TΓ1(p). Define for all integers r
the following multiset

Dr := {{t〈1〉Tj | d− r < j ≤ r}} ] {{t〈k〉Tj | 1 ≤ j ≤ d− r, 1 ≤ k ≤ p− 1

2
}}

where Ti denotes the i’th Hecke operator in TΓ1(p). Suppose that for all r
with bd

2
c ≤ r ≤ d the multiset Dr does not contain a sub-multiset of size d

which is linearly dependent over Fl. Then t◦f : Xµ(p)(d) → Jµ(p) is a formal
immersion at σFl for all ordered sums of cusps σ := n0σ0 + · · · + nkσk of
degree d with the σi lying above ∞ ∈ X0(p).

Proof. Suppose that there is an ordered cusp sum σ := n0σ0 + · · · + nkσk
of degree d such that t ◦ f is not a formal immersion at σFl . Then write
σ0 = 〈dk〉σk for some integers 1 ≤ d0, d1, . . . , dk ≤ (p − 1)/2 then by 5.9 we
see that the d vectors in the following multiset

S := {{t〈di〉Tj | 0 ≤ i ≤ k, 1 ≤ j ≤ ni}}

are Fl linearly dependent in TΓ1(p) ⊗ Fl. We know that

min(n0, d− n0) ≥ n1 ≥ n2 ≥ . . . ≥ ni.

So if n0 ≥ bd2c then S ⊆ Dn0 and if n0 ≤ bd2c then S ⊆ Dd−n0 so both cases
lead to a contradiction.

5.6 Testing the criterion

Using a computer program written in Sage I first tested the criterion for
X0(p). The program and the output generated by it will be available at http:
//www.math.leidenuniv.nl/nl/theses/, the location where this thesis is
published. The results of testing the criterion are summarised in the following
propositions.

Proposition 5.15. If p = 131, 139, 149, 151, 167, 173, 179, 181, 191 or p is a
prime with 193 < p < 2282 then there are t1, t2 ∈ TΓ0(p) as in 5.6 such that
t1t2T1, . . . , t1t2T7 are F2 linearly independent in TΓ0(p) ⊗ F2.
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Proof. I tested the criterion for all 17 ≤ p ≤ 2282 using different choices
of t1 and t2. I tried t1 = t1(t) (see proposition 5.8) using t = T2, . . . , T60.
And I tried t2 = Tq − q − 1 for all primes 2 < q < 20 with q 6= p. For all
primes mentioned above I found at least one pair t1, t2 such that the linear
independence holds. The total time used was about 2 hours when checking
the criterion for about 8 primes in parallel so it could be used to check the
criterion for bigger d and p8.

Testing the fast version of the criterion for Xµ(p) gives the following
proposition:

Proposition 5.16. For all pairs (p, d) with p a prime 17 ≤ p ≤ 193 and
3 ≤ d ≤ 7 not satisfying any of the following conditions:

• d = 3 and p ∈ {17}

• (d = 4 or d = 5) and p ∈ {17, 19, 29}

• (d = 6 or d = 7) and p ∈ {17, 19, 23, 29, 31, 37}

there are t1 and t2 as in proposition 5.6 such that for t = t1t2 the Dr as
in lemma 5.14 do not contain a subset of size d which is linearly dependent
over F2.

Proof. This was again verified using the computer. This time I tried t1 = t1(t)
using t = T2, . . . , T20 and I tried t2 = Tq − q − 〈q〉 for the primes 2 < q < 20
only trying new choices of t1 and t2 if no succesful pair combination of t1
and t2 had been found yet. The most time was spend on the case p = 193
which took about 14 hours.8And that while only one combination of t1 and
t2 was tried since t1 = t1(T2) and t2 = T3 − 3− 〈3〉 already gave the desired
result.

Because b(37/2 + 1)2c = 2281 these computations together with 5.13 im-
mediately give the following result .

Corollary 5.17. If max(S(7)) ≤ 2281 then the inclusions of sets as listed
in table 5.1 hold.

8This is not a very precise timing and meant for indicative purposes only.
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S
(v)
2 (3) ⊆ Primes(17)

S
(v)
2 (4) ⊆ Primes(19) ∪ {29}
S

(v)
2 (5) ⊆ Primes(19) ∪ {29}
S

(v)
2 (6) ⊆ Primes(41)

S
(v)
2 (7) ⊆ Primes(41)

Table 5.1: Some bounds on S
(v)
2 (d).

The computations for this thesis where done using Sage 5.2 [Stein et al.,
2012] and Magma 2.17-8 [Bosma et al., 1997].
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A Calculations of the F2 gonality of X1(N) us-

ing Magma

The calculations in this section are all based on proposition 2.14. What is
calculated is the minimum occurring in that proposition for d large enough
to prove the needed lower bound on the gonality. Upper bounds will follow
from actually finding functions of low degree during these computations.
The set S of divisors that dominate all functions of degree ≤ d needed for
proposition 2.14 is obtained by applying 2.16 to the set Sd−n + D obtained
by using proposition 2.15.

Throughout the entire calculation I will use the fact that the diamond op-
erators act transitively on X1(N)(F2) as soon as #X1(N)(F2) = #(Z/NZ)∗ {±1}.
This is because this means that the elements of X1(N)(F2) are precisely the
cusps corresponding to the Néron N -gons. This allows us to use 2.16 to
reduce the size of Sd−n +D a factor slightly smaller then #(Z/NZ)∗/ {±1}.

For the calculation we use one custom function. It takes as input a divisor
and gives as output the degrees of all nonzero functions in the associated
Riemann-Roch space. The magma code of this function is as follows:

function FunctionDegrees(divisor)

space,map := RiemannRochSpace(divisor);

return [Degree(map(i)) : i in space | i ne 0 and map(i) ne 1];

end function;

The files x1 N.m , which are loaded in the magma code below, have the
following structure:

A<x,y> := PolynomialRing(GF(2),2);

P,homogenize := Homogenization(A);

f := x^13+x^12*y+...; \\this line contains an equation for X_1(N)

f := homogenize(f);

XF2 := Scheme(ProjectiveSpace(P),f);

FF := FunctionField(XF2);

AFF := AlgorithmicFunctionField(FF);

plc1 := Places(AFF,1);

divgrp := DivisorGroup(AFF);

div1 := [divgrp ! i : i in plc1];

cuspsum := &+ div1;

The equations were taken from http://www-math.mit.edu/~drew/X1_

curves.txt. The files x1 N.m are part of the supplementary files published
together with this thesis at http://www.math.leidenuniv.nl/nl/theses/.
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Most commands below are finished in a matter of seconds. For N = 29, 31
there are a few commands that take about a minute. For N = 31 there is one
command that takes up 12 minutes, so this is where most of the computing
time is spend.

A.1 N = 17

> load "x1_17.m";

Loading "x1_17.m"

> [#Places(AFF,i) : i in [1..10]];

[ 8, 0, 0, 3, 8, 8, 8, 33, 64, 92 ]

> //indeed only #(Z/NZ)*/{1,-1} rational points

> //n=ceil(8/3)=3 so S=S_{3-3}+cuspsum={cuspsum}

> //dominates all functions of deg <=3

> Min(FunctionDegrees(cuspsum));

4 1

> //minimum is 4 at index 1 so indeed there are no degree <=3 maps!

A.2 N = 19

> load "x1_19.m";

Loading "x1_19.m"

> [#Places(AFF,i) : i in [1..10]];

[ 9, 0, 0, 0, 9, 13, 18, 27, 38, 117 ]

> //indeed only #(Z/NZ)*/{1,-1} rational points

> //n=ceil(9/3)=3 so S=S_{4-3}+cuspsum

> //dominates all functions of deg <=4

> //Case cuspsum+p with p a place of degree 1.

> //We can assume p=div1[1].

> Min(FunctionDegrees(cuspsum+div1[1]));

5 1

> //minimum is 5 at index 1 so indeed there are no degree <=4 maps!

A.3 N = 21

> load "x1_21.m";

Loading "x1_21.m"

> [#Places(AFF,i) : i in [1..10]];

[ 6, 3, 2, 1, 6, 1, 18, 42, 48, 99 ]

> //indeed only #(Z/NZ)*/{1,-1} rational points

> //n=ceil(6/3)=2 so S=S_{3-2}+cuspsum

> //dominates all functions of deg <=3

> //Case cuspsum+p with p a places of degree 1.

44



> //We can assume p=div1[1].

> Min(FunctionDegrees(cuspsum+div1[1]));

4 3

> //minimum is 4 at index 3 so indeed there are no degree <=3 maps!

A.4 N = 23

> load "x1_23.m";

Loading "x1_23.m"

> [#Places(AFF,i) : i in [1..10]];

[ 11, 0, 0, 0, 0, 0, 33, 33, 55, 88 ]

> //indeed only #(Z/NZ)*/{1,-1} rational points

> //n=ceil(11/3)=4 so S=S_{6-4}+cuspsum

> //dominates all functions of deg <=4

> //Case cuspsum+p+q with p,q places of degree 1.

> //We can assume p=div1[1].

> Min(&cat[FunctionDegrees(cuspsum+div1[1]+q) : q in div1]);

7 7

> //minimum is 7 at index 7 so indeed there are no degree <=6 maps!

A.5 N = 25

> load "x1_25.m";

Loading "x1_25.m"

> [#Places(AFF,i) : i in [1..10]];

[ 10, 0, 0, 2, 1, 5, 10, 45, 50, 121 ]

> //indeed only #(Z/NZ)*/{1,-1} rational points

> //n=ceil(10/3)=4 so S=S_{4-4}+cuspsum={cuspsum}

> //dominates all functions of deg <=4

> FunctionDegrees(cuspsum);

[ 5, 5, 10, 10, 5, 5 ]

> //minimum is 5 so indeed there are no degree <=4 maps!

A.6 N = 27

> load "x1_27.m";

Loading "x1_27.m"

> [#Places(AFF,i) : i in [1..10]];

[ 9, 3, 0, 0, 0, 10, 9, 18, 92, 99 ]

> //indeed only #(Z/NZ)*/{1,-1} rational points

> //n=ceil(9/3)=3 so S=S_{5-3}+cuspsum

> //dominates all functions of deg <=5

> //Case cuspsum+p+q with p,q distinct places of degree 1.

45



> //We can assume p=div1[1].

> Min(&cat[FunctionDegrees(cuspsum+div1[1]+q) : q in div1]);

6 1

> //Case D’ = p with p a place of degree 2.

> Min(&cat[FunctionDegrees(cuspsum+p) : p in Places(AFF,2)]);

6 1

> //minimum is 6 so indeed there are no degree <=5 maps!

A.7 N = 29

> load "x1_29.m";

Loading "x1_29.m"

> [#Places(AFF,i) : i in [1..10]];

[ 14, 0, 0, 0, 0, 21, 17, 28, 56, 119 ]

> //indeed only #(Z/NZ)*/{1,-1} rational points

> //n=ceil(14/3)=5 so S=S_{10-5}+cuspsum

> //dominates all functions of deg <=10

> //Case cuspsum+4p+q with p,q places of degree 1.

> //We can assume p=div1[1].

> Min(&cat [FunctionDegrees(cuspsum + div1[1]*4 + q)

> : q in div1]);

11 1

> //Case cuspsum+3p+2q with p,q distinct places of degree 1.

> //We can assume p=div1[1].

> Min(&cat [FunctionDegrees(cuspsum + div1[1]*3 + q*2)

> : q in div1[2..14]]);

12 1

> //Case cuspsum+3p+q+r with p,q,r distinct places of degree 1.

> //We can assume p=div1[1].

> Min(&cat[FunctionDegrees(cuspsum + div1[1]*3 + &+qr)

> : qr in Subsets(SequenceToSet(div1[2..14]),2)]);

11 3

> //Case cuspsum+2p+2q+r with p,q,r distinct places of degree 1.

> //We can assume r=div1[1].

> Min(&cat[FunctionDegrees(cuspsum + div1[1] + 2*&+pq)

> : pq in Subsets(SequenceToSet(div1[2..14]),2)]);

11 13

> //Case cuspsum+2p+q+r+s with p,q,r,s distinct places of degree 1.

> Min(&cat[FunctionDegrees(cuspsum + 2*div1[1] + &+qrs)

> : qrs in Subsets(SequenceToSet(div1[2..14]),3)]);

11 15

> //Case cuspsum+p+q+r+s+t with p,q,r,s,t distinct places of degree 1.

> //Here we use that f’ or f’-1 has a zero at a rational point u
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> //if it has degree 13 or less. We can assume u=div1[1].

> Min(FunctionDegrees(cuspsum*2-3*div1[1]));

12 1

> //minimum is 11 so indeed there are no degree <=10 maps!

A.8 N = 31

> load "x1_31.m";

Loading "x1_31.m"

> [#Places(AFF,i) : i in [1..10]];

[ 15, 0, 0, 0, 3, 15, 15, 30, 50, 94 ]

> //indeed only #(Z/NZ)*/{1,-1} rational points

> //n=ceil(15/3)=5 so S=S_{11-5}+cuspsum

> //dominates all functions of deg <=11

> //Case cuspsum+5p +q with p,q places of degree 1.

> //We can assume p=div1[1].

> Min(&cat [FunctionDegrees(cuspsum+div1[1]*5+ q) :

> q in div1]);

13 1

> //Case cuspsum+4p+2q with p,q distinct places of degree 1.

> //We can assume p=div1[1].

> &cat [FunctionDegrees(cuspsum+div1[1]*4 + q*2)

> : q in div1];

[]

> //Case cuspsum+4p+q+r with p,q,r distinct places of degree 1.

> //We can assume p=div1[1].

> Min(&cat[FunctionDegrees(cuspsum + div1[1]*4 + &+qr)

> : qr in Subsets(SequenceToSet(div1[2..15]),2)]);

12 1

> //Case cuspsum+3p+3q with p,q distinct places of degree 1.

> //We can assume p=div1[1].

> &cat [FunctionDegrees(cuspsum+div1[1]*3 + q*3)

> : q in div1];

[]

> //Case cuspsum=3p+2q+r and cuspsum+2p+2q+2r with p,q,r distinct

> //places of degree 1 follow from cuspsum+3p+2q+2r.

> //we can assume p=div1[1].

> Min(&cat[FunctionDegrees(cuspsum + div1[1]*3 + 2*&+qr)

> : qr in Subsets(SequenceToSet(div1[2..15]),2)]);

12 3

> //Case cuspsum+3p+q+r+s, cuspsum+2p+q+r+s+t and cuspsum+p+q+r+s+t+u

> //with p,q,r,s,t,u distinct places of degree 1.

> //Here we use that either f’ or f’-1 has zero at a rational point v
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> //if it has degree 14 or less. We can assume v=div1[1].

> Min(&cat [FunctionDegrees(cuspsum*2-3*div1[1]+2*p)

> : p in div1]);

12 38

> //Case cuspsum+2p+2q+2r has already been handled

> //Case cuspsum+2p+2q+r+s whith p,q,r,s distinct places of degree 1.

> //This is the hardest case and takes almost 12 minutes

> //while other cases take about a minute.

> //We can assume p=div1[1].

> Min(&cat[&cat [FunctionDegrees(cuspsum+2*div1[1]+2*q+&+rs)

> : q in div1[2..15] | q notin rs ]

> : rs in Subsets(SequenceToSet(div1[2..15]),2)]);

13 3

> //Case cuspsum+p+q with deg p=1 and deg q=5.

> //We can assume p=div1[1].

> &cat[FunctionDegrees(cuspsum+div1[1]+q) : q in Places(AFF,5)];

[]

> //Case cuspsum+p with deg p=6.

> &cat[FunctionDegrees(cuspsum+q) : q in Places(AFF,6)];

[]

> //minimum is 12 so indeed there are no degree <=11 maps!
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