
The representability of Γ1(N)

1 Conventions

Let S be a scheme. Troughout this text we will call a scheme C/S a smooth
curve if C is smooth of relative dimension 1, separated and finitly presented
over S. This convention follows 1.2.1 of Katz and Mazur [1985]. Also if N
is an integer then by N is invertible on S we mean that N · 1 ∈ OS(S)∗ or
equivalently that S is a Z[ 1

N
] scheme.

2 Points of exact order N

This section is based on section 1.4 of Katz and Mazur [1985] and in this
section we will define what it means to be a point of exact order N and also
give some equivalent characterisations when N is invertible.
Throughout this section C/S will be a smooth curve that is also a commu-
tative groupscheme.

Definition 2.1. Let N > 0 be an integer and C/S a smooth curve then
a point of exact order N is a point P ∈ C(S) such that the cartier divisor
D =

∑N
i=1[iP ] is a closed subgroupscheme of C.

In the above definition [iP ] denotes the divisor corresponding to the sec-
tion iP . For D to be a subgroupscheme means that the composed map
D ×S D → C ×S C → C factors trough D, and similar conditions for the
inverse and the unit element.

Remark. There is some caution to be taken with the above definition! If S
is an Fp scheme then 0 ∈ C(S) is of exact order pd for all integers d because

ker(Frobd : C → C(pd)) = [0]pd. Take for example the multiplicative group
over Fp i.e. take C = Gm,Fp = SpecFp[x, x−1] then ker(Frobd) = (xp

d − 1) =

(x− 1)p
d

= pd[0].
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Luckely this kind of behavior can only occur when N is not invertible on
S as we can see by the following lemma.

Lemma 2.2. Let N be invertible on S and let P ∈ C(S)[N ] then the follow-
ing are equivalent.

(1) P has exact order N

(2) For all geometric points Spec k → S the point Pk ∈ Ck(k) has exact
order N .

(3) For all geometric points Spec k → S the point Pk ∈ Ck(k) has order N
as an element of an abstract group.

(4) D =
∑N

i=1 is etale over S

(5) The map from the constant groupscheme (Z/NZ)S → C given by iP on
the i-th component of (Z/NZ)S induces an isomorphism φ : (Z/NZ)→
D.

Remark. We will proof (1) ⇒ (2), (2) ⇒ (3), (3) ⇔ (4), (3) ⇔ (5) and
(5) ⇒ (1). Only the proof of (2) ⇒ (3) will require N to be invertible
on S so without this we still have (3) ⇔ (4) ⇔ (5) ⇒ (2) ⇒ (1). Also all
proves except for (2)⇒ (3) will be the same. The proof of (2)⇒ (3) will be
a different one given to me by Bas Edixhoven.

Proof.

(1)⇒(2) This is because being of exact order N is stable under base change.

(5)⇒(1) This is because the isomorphism φ gives D a subgroup structure.

(3)⇔(4) We know that D is locally free of rank N over S because it is a sum
of N divisors of degree 1. By covering S with open affines such that
their preimage in D is free we may reduce to the case S = SpecA and
D = SpecB with B a free A module of rank N . Now we can see the
equivalence as follows:

B is etale over A⇔ DiscrB/A ∈ A∗ ⇔ ∀A→ k with k an algebraically
closed field: DiscrB/A 6= 0 ∈ k∗ ⇔ ∀A→ k: Dk is etale over Spec k ⇔
(3)
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(3)⇔(5) Again reduce to the case S = SpecA and D = SpecB with B a free
A module of rank N . Since (Z/NZ)S is also free of rank N over S we
can write φ = M for some matrix M ∈MN(A) after choosing a basis
on both sides. Now the equivalence is shown as follows:

φ is an isomorphism⇔ detM ∈ A∗ ⇔ ∀A→ k with k an algebraically
closed field: detM 6= 0 ∈ k ⇔ (3).

(2)⇒(3) Let (2) hold and asume for contradiction that (3) doesn’t hold for a
certain Spec k → S then there is a 1 < d < N with dPk = 0 in the
rest of the proof we assume that d is as small as possible. Then the
divisor D′ = (N/d)[0] is the connected component of the identity in
D and hence D′ is a subgroupscheme of D. Now as a scheme D′ ∼=
Spec k[x]/(xN/d). From Jinbi his talk we have seen that the fact that
D′ is a groups scheme implies that

Ω1(k[x]/(xN/d)) =
k[x]/(xN/d)dx

N/DN/d−1

is a free k[x]/(xN/d) module. But since N/d 6= 1 this can only happen
if N/d = 0 ∈ k wich is a contradiction.

3 The category Ell/T and moduli problems

In this section we discus some formalism of what we exactly mean by a
moduli problem. What we do here is similar to the definitions given in Jinbi
his talk, but slightly more precise so that we can later clearly state the main
theorem we will prove in the section 4.

Definition 3.1. Let T be a scheme then we define the category Ell/T to be
the category whose objects are triples (E, S, f) where S is a T scheme, E is
an elliptic curve over S and f : E → S is the defining morphism that makes
E an elliptic curve over S. A morphism between triples g : (E1, S1, f1) →
(E2, S2, f2) is a pair g = (g1, g2) with g1 : E1 → E2 and g2 : S1 → S2 a
morphisms such that the following diagram is cartesian:
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E1 E2

S1 S2

g1

f1

g2

f2

Note that the notation (E, S, f) is quite cumbursome so instead we will
write E/S for this object if it is clear what f is. We will also write Ell for
Ell/ SpecZ.

Definition 3.2. A moduli problem is a contravariant functor P : Ell→ Sets.
Let T be a scheme, then we call P representable over T if the functor P|Ell/T

is representable. If P representable over T then we will similarly call a pair
(E/S, P ) with E/S ∈ Ell/T and P ∈ P(E/S) universal for P over T if
(E/S, P ) is universal for P|Ell/T .

For more details on universal pairs and their relation to representability
see Appendix A or Mac Lane [1998][Chapter III]

To make the above defintions more concrete we aply it to the examples
Jinbi gave.

Example 1. Let Γω : Ell→ Sets be the moduli problem given by Γω(E/S) :=
{ω ∈ ωE/S(S)|ω generates ωE/S}. Then we have seen that Γω is reprentable
over Z[1

6
]. Let ∆ = −16(4a3 − 27b2), A = Z[1

6
, a, b, 1

∆
], Yω = SpecA and

Eω = ProjA[x, y, z]/(y2z − x3 − axz2 − bz3) then the section −dx
2y

= − dy
3x2+a

of Ω1
Eω/Yω

(DEω(Z)) will extend to a global section Ωuniv ∈ Ω1
Eω/Yω

(Eω) .

Now take ωuniv := 0∗(Ωuniv) ∈ 0∗(Ω1
Eω/Yω

)(Yω) = ωEω/Yω(Yω) 1 then the pair

(Eω/Yω, ωuniv) is universal for Γω over Z[1
6
].

Example 2. Let Γ≥(4) : Ell→ Sets be the moduli problem given by

Γ≥(4)(E/S) :=

{P ∈ E(S)|Pk has order 4 or more for all geometric points Spec k → S}.

Then we have seen that Γ≥(4) is reprentable over Z. Let ∆ = −t3(16t2 +
(8s2 − 20s − 1)t + s(s + 1)3), A = Z[s, t, 1

∆
], Y≥(4) = SpecA and E≥(4) =

1We could also define ωuniv : f∗(Ωuniv) ∈ f∗(Ω1
Eω/Yω

)(Yω) = ωEω/Yω
(Yω), wich actually

is the same element under the cannonical identifiaction 0∗(Ω1
Eω/Yω

) = f∗(Ω1
Eω/Yω

)
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ProjA[x, y, z]/(y2 + (s + 1)xy + ty − x3 − tx2) then P≥(4) = (0 : 0 : 1) ∈
E≥(4)(Y≥(4)) ⊂ P2

Y≥(4)(Y≥(4)) has order 4 or more for all geometric points

and in fact the pair (E≥(4)/Y≥(4), P≥(4)) is universal for Γ≥(4).

To a moduli problem on Ell we can also associate a functor on Sch in the
following way.

Definition 3.3. Let P : Ell→ Sets be a moduli problem and T be a scheme
then we define P|Sch /T : Sch /T → Sets by

S 7→

{
set of isomorphism classes of pairs (E, a)

where E is an elliptic curve over S and a ∈ P(E/S)

}

where a morphism between pairs (E1, a2) and (E2, a2) is a morphism g :
E1 → E2 such that P(g)(a2) = a1.

And the representability of P|Sch /T follows from the representability of
mp over T . To be precise:

Proposition 3.4. If (E/S, a) is a universal pair for P over T then (S, (E, a))
is a universal pair2 for P|Sch /T .

Proof. By defintion we know that Ψ(E/S,a) has an inverse (see definition
3.2) let Ψ(E/S,a)−1

be this inverse. Then we define Ψ(S,(E,a))−1
: P|Sch /T →

HomT ( , S) componentwise as:

Ψ
(S,(E,a))−1

S′ : P|Sch /T (S ′)→ HomT (S ′ , S) (1)

(E ′, a′) 7→ g2 (2)

Where g2 is the second component of the morphism Ψ
(E/S)−1

E′/S′ (a′) : E ′/S ′ →
E/S. One can show that this really is an inverse of Ψ(S,(E,a)) showing that
(S, (E, a)) is universal.

4 The representability of Γ1(N)

In this section we will study the following set of moduli problems.

2The definition of universal pair here is similar to that in definition 3.2 and this concept
of universal pair is in fact purely category theoretical.
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Definition 4.1. Let N ≥ 1 be an integer then we define the moduli problem
Γ1(N) : Ell→ Sets by

Γ1(N)(E/S) := {P ∈ E(S)|P has exact order N}

if Γ1(N) is representable over T then we will write (E1(N)T/Y1(N)T , P1(N)T )
for a corresponding universal pair.

Note that for a fixed N such that Γ1(N) is representable there will be
multiple universal pairs, but they are unique up to unique isomorphism so it
will not be a to big abuse of notation, and in fact later on we will explicitly
construct one of them, so one might instead take that as the definition of
(E1(N)T/Y1(N)T , P1(N)T ) from that point on.

The main theorems we will prove are.

Theorem 4.2. If N ≥ 4 then Γ1(N) is reprentable over Z[ 1
N

].

and

Theorem 4.3. If N ≥ 4 then Y1(N)Z[ 1
N

] is curve a over Z[ 1
N

] i.e smooth of
relative dimension 1 separated and of finite presentation.

Actually there is also a converse to Theorem 4.2 for N < 4

Proposition 4.4. If N = 1, 2 or 3 and T is a scheme wich has a geometric
point Spec k → T with char k 6= 2, 3 then Γ1(N)|Sch /T is not representable
and hence Γ1(N) is not representable over T .

This proposition can also be proven without the condition char k 6= 2, 3
but it will really complicate computations.

Proof. Define Ea be the elliptic curve over k(t) given by the equation y2−x3−
a for any a ∈ k(t)∗. Now all isomorphims between elliptic curves over k(t)
in weierstrass form are of the form φu,r,s,t(x, y) = (u2x + r, u3y + su2x + t)3

for some u, r, s, t in k(t).Let a, b in k(t)∗ and let φu,r,s,t : Ea → Eb be an
isomorphism then by putting (u2x+r, u3y+su2x+ t) in the eqation of Eb it’s
easy to see that r = s = t = 0. Doing this will also give 0 = (u3y)2−(u2x)3−
b = u6(y2−x3)− b = u6a− b hence Ea ∼= Eb if and only if a/b ∈ k(t)∗6. From
this discussion it’s easy to see that E1 Et2 ,Et3 are not isomorphic over k(t).
Suppose for contradiction that Γ1(N)|Sch /T is reprentable and let Y1(N)T

3This can be deduced from Jinbi’s talk about elliptic curves in weierstrass form.
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be the scheme representing it. Then the cannonical map Y1(N)T (k(t)) →
Y1(N)T (k(t)) will be an injection. However for N = 1 the fact that (E1, (0 :
1 : 0)) and (Et2 , (0 : 1 : 0)) are not isomorphic but become isomorphic
over k(t) will show that Y1(1)T (k(t)) → Y1(1)T (k(t)) is not an injection,
contradicting our assumption hence Γ1(1)|Sch /T is not representable. For
N = 2 and one can apply the same reasoning using the pairs (E1, (−1 : 0 : 1))
and (Et3 , (−t : 0 : 1)) and for N = 3 one can use the pairs (E1, (0 : 1 : 1))
and (Et2 , (0 : t : 1)).

Remark. The proof above also gives some insight in why Γ1(N) is not nece-
carily representable over Z. Because if we take for example Γ1(pn) with p > 3
a prime then we have seen that (0 : 1 : 0) is a point of exact order pn for
all elliptic curves E/S with S an Fp scheme. Hence we can use the pairs
(E1, (0 : 1 : 0)) and (Et2 , (0 : 1 : 0)) above to show that Γ1(pn) is not rep-
resentable. This would be an argument to use item (3) of lemma 2.2 as the
definition of exact order N . However this will make the resulting moduli
space Y1(N) less usefull for studying the arithmetic of for example elliptic
curves over numberfields wich have point of order p that reduce to point of
order 1. Similarly the the moduli space Y1(N)Z[ 1

N
] doesn’t allow us to easilly

study elliptic curves over numberfields wich have bad reduction at a certain
prime. This second problem can be fixed by generalizing the definition of
elliptic curve a bit and construct a new moduli space X1(N)Z[ 1

N
] wich will

hopefully happen later in this seminar.

4.1 Proof of theorem 4.2

We will proof this theorem by showing that Γ′1(N) is representable over Z
where Γ′1(N) is the moduli problem we get by replacing being of exact order
N by item (3) of lemma 2.2. We do this be explicitly contructing a universal
pair for Γ′1(N). Since N is invertible in Z[ 1

N
] we see that Γ′1(N)|Ell /Z[ 1

N
] and

Γ1(N)|Ell /Z[ 1
N

] are acutally the same functor so the theorem will follow.

Now define the moduli problem Γ≥(N) similar to Γ≥(4) in example 2.

Proposition 4.5. Let N ≥ 4 then Γ≥(N) is representable by a universal
pair (E≥N/Y≥(N), P≥(N)) with Y≥(N) ⊂ Y≥(4) an open subcheme.

Proof. Since Y≥(4) ⊂ A2
Z open and PicA2

Z = 0 we see that PicY≥(4) =
0 so for all d ∈ Z we can write dP≥(4) = (sd,0 : sd,1 : sd,2) with sd,i ∈
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OY≥(4)(Y≥(4)). Now define

Y≥(N) :=
N−1⋂
d=1

(DY≥(N)(sd,0)
⋃

DY≥(N)(sd,2)

Then this will be an open subcheme of Y1(4). Define E≥4 := f−1(Y≥(N)) =
E≥4 ×Y≥(4) Y≥(N) and Pgeq(N) = Pgeq(4)|Y≥(N). P≥(N) will have order
at least N in all geometric points since for all d < N and all geometric
points Spec k → Y≥(N) we have dPgeq(N)k 6= (0 : 1 : 0) by construction.
Now let (E/S, P ) be any pair of an elliptic curve together with a point of
order at least N then P is of order at least 4 so we get a unique mor-
phism g : E/S → E≥(4)/Y≥(4). Now by contsruction g will factor trough
E≥(N)/Y≥(N) and because E≥(N)/Y≥(N) → E≥(4)/Y≥(4) is given by a
pair of open immersions, this factorisation is even unique hence we have
shown that the pair (E≥N/Y≥(N), P≥(N)) is universal for Γ≥(N).

Now define Y ′1(N) := Z(sd,0, sd,2) ⊂ Y≥(N) to be the closed subscheme
defined by the ideal sheaf generated by sd,0 and sd,2 and define E ′1(N) and
P ′1(N) by (E ′1(N), P ′1(N)) := Γ≥(N)Sch(Y ′1(N) → Y≥(N))(E≥(N), P≥(N)).
Using the exact same argument as in the proof above but replacing open
immersion by closed immersion we see that the pair (E ′1(N)/Y ′1(N), P ′1(N))
is indeed universal.

Remark. Using division polynomials one can even find a single fd ∈ OY≥(4)(Y≥(4))
such that DY≥(N)(fd) = (DY≥(N)(sd,0) ∪DY≥(N)(sd,2). For more details on di-
vision polynomials in a scheme theoretic setting see for example in Jinbi Jin
his thesis Jin [2011]. As a corollary we get that Y≥(N) and Y ′1(N) are actu-
ally affine. It is also possible to prove that Y ′1(N)Z[ 1

N
] = Y1(N)Z[ 1

N
] is affine

without using division polynomials and we will give a sketch how to do this
in 4.2.

Example 3. As an example we give Y1(4)Z[ 1
4

] and Y1(5)Z[ 1
5

] explicitly. The
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points dP≥(4) are the following 4:

Pgeq(4) =(0 : 0 : 1) (3)

2Pgeq(4) =(−t : st : 1) (4)

3Pgeq(4) =(−s : s− t : 1) (5)

4Pgeq(4) =((t− s)ts : st2(1− s)− t3 : s3) (6)

5Pgeq(4) =((s3t− st(s− t))(s− t) : s2t(s− t)− s5t : (s− t)3) (7)

From this we see that Y1(4)Z[ 1
4

] = SpecZ[1
4
, s, t, 1

∆
]/((t − s)ts, s3) = SpecA

Now since s3 = 0 ∈ A we see that (t − s)t is a unit in A because s is
nilpotent and t a unit. In particular we see that s = 0 in A hence A =
SpecZ[1

4
, s, t, 1

∆
]/(s) in particular we see that Y1(4)Z[ 1

4
] is smooth of relative

dimension 1 over Z[1
4
]. Similarly one shows that Y1(5)Z[ 1

5
] = SpecZ[1

5
, s, t, 1

∆
]/(s−

t) is smooth of relative dimension 1 over Z[1
5
]

4.2 Ingredients of the proof of theorem 4.3

Before we can proof that Y1(N)Z[ 1
N

] is a curve over Z[ 1
N

] we need to develop

some more theory. We state proposition 10.1.2 from Edixhoven [1996] and
we will give a modified proof.

Proposition 4.6. Let f : X → Y be a finite etale morphism of schemes
and let p : Y → X be a section then im is open and closed in X and hence
X = im pq (Y \ im p) as schemes.

Proof. By covering Y with open affines we can reduce to the case that Y =
SpecA is affine. Then also X = SpecB is affine and since f is finite etale, B
is a finitely generated as A module. Now define I = ker p# and let π : B →
B/I2 be the quotient map then I claim I = I2. Indeed since f is etale it is
also formally etale hence the following diagram has a unique diagonal that
makes everything commute:

A B/I2

B B/I = A

π ◦ f

f
∃!

4I computed these with sage and written them down in a slightly nicer form
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Since both π and π ◦ f ◦ p make the diagram commute they are equal
hence I2 = kerπ = ker π ◦ f ◦ p ⊃ I so I = I2 as claimed. Now since the
exact sequence of A-modules I → B → A is split we see that B ∼= A ⊕ I
as A-modules. Since B is finitely generated as A module we see that I
is also finitely generated as an A-module and hence also finitely generated
as a B module. Now Nakayama’s lemma gives us that there is an r in
B such that r ≡ 1 mod I and rI = 0. Since (r, r − 1) = (1) we have
I = (r − 1)I + r(I) = (r − 1)I ⊂ (r − 1)B ⊂ I hence I = (r − 1) and by the
chinese remainder theorem we have B ∼= B/r × B/(r − 1) = R/r × A and
we have found the wanted decomposition.

Corollary 4.7. Let S be a scheme, E/S an elliptic curve and d,N be two
integers with d|N and N is invertible on S then E[d] is open and closed in
E[N ] and E[N ] = E[d]q (E[N ]\E[d])

Proof. We have that E[N/d] is etale over S and that 0 is a section so
E[N/d] = im 0 q (E[N/d]\ im 0) hence applying the inverse of the mul-
tiplication by d map we get E[N ] = [d]( − 1)(im 0 q (E[N/d]\ im 0)) =
E[d]q (E[N ]\E[d])

By the above corollary it makes sense to make the following definition:

Definition 4.8. Let E/S and N be as in the previous corollary then we
define:

E[N ]∗ := E[N ]\
⋃

d|N,d<N

E[d]

We see that E[N ]∗ is an open and closed subscheme of E[N ] and in
particular that it is etale over S. And also by construction it is clear that
giving an S point of E[N ]∗ is equivalent to giving a point of exact order N
in E(S).

Now I will sketch the proof that Y1(N)Z[ 1
N

] is affine as promised in 4.1.

Proof. The key point is to note that Y1(N)Z[ 1
N

] = P≥(4)−1(E≥(4)[N ]∗) as

they represent the same functor. Then the composition E≥(4)Z[ 1
N

][N ]∗ →
E≥(4)Z[ 1

N
][N ] → E≥(4)Z[ 1

N
] is a sequence of closed immersions hence itself

a closed immersion. This shows P≥(4)−1(E≥(4)[N ]∗) → Y≥(N) is a clossed
immersion, hence Y1(N)Z[ 1

N
] is closed in affine hence affine itself.
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Proposition 4.9. Let M,N be coprime integers with N ≥ 4 then the schemes
E1(N)Z[ 1

NM
][M ]∗ and Y1(NM)Z[ 1

NM
] are isomorphic.

One might simply say that both schemes represent the same functor and
hence are isomorphic. And the proof below is basically a spelled out version
of that remark.

Proof. In this proof we drop all the Z[ 1
NM

] for readability. Let E/E1(N)[M ]∗

be the elliptic curve E1(N)[M ]∗ ×Y1(N) E1(N) and consider the following
cartesian diagram.

E //

��

E1(N)

��
E1(N)[M ]∗ // Y1(N)

. Let s : E/E1(N)[M ]∗ → E1(N)/Y1(N) be the morphism in Ell correspond-
ing to this diagra and let i : E1(N)[M ]∗ → E1(N) be the inclusion then
P := P1(N)E1(N)[M ]∗ ∈ E(E1(N)[M ]∗) is a point of exact order N and Q :=
(IdE1(N)[M ]∗ , i) ∈ inE(E1(N)[M ]∗) is point of exact order M hence P +Q is
of exact order NM (here we use the isomorphism MZ/NMZ×NZ/NMZ→
Z/NMZ given by (a, b) 7→ a+ b). And P +Q will give us a morphism from
g : E/E1(N)[M ]∗ → E1(NM)/Y1(NM). Now to get an inverse of this mor-
phism consider the point P1(NM) of exact order NM in E1(NM)/Y1(NM).
Using the inverse of MZ/NMZ × NZ/NMZ → Z/NMZ we get points
P,Q ∈ E1(NM)(Y1(NM)) of exact order N and M respectively. The point
P will give us a morphism h : E1(NM)/Y1(NM) → E1(N)/Y1(N) and the
point Q will give a factorisation g−1 : E1(NM)/Y1(NM) → E/E1(N)[M ]∗

of h E/E1(N)[M ]∗ such that h = g−1 ◦ s. One can check that g and g−1 are
indeed eachothers inverse and the proposition follows.

Proposition 4.10. The map f : E1(N)Spec[ 1
NM

][M ]∗ → Y1(N)Z[ 1
NM

] is sur-

jective (as map of sets).

Proof. Let p ∈ Y1(N)Z[ 1
NM

] be point and let s : Spec k → Y1(N)Z[ 1
NM

] be a
geometric point that maps to p. Then it suffices to show that we can find
an s′ : Spec k → E1(N)Spec[ 1

NM
][M ]∗ such that f ◦ s′ = f . But such an s′ is

just an element of E1(N)[M ]∗(k) then because k has characteristic unequal
to M we know that E1(N)[M ](k) = E1(N)(k)[M ] ∼= (Z/MZ)2 so such an s′

exists.
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The last result wich we need is[Stacks Project, 2012, Lemma 02K5] wich
we state below without proof.

Lemma 4.11. Let

X

f   A
AA

AA
AA

p

��

Y

q
~~~~

~~
~~

~~

S

be a commutative diagram of morphisms of schemes. Assume that

1. f is surjective, and smooth,

2. p is smooth, and

3. q is locally of finite presentation5.

Then q is smooth.

We need this for the following corollary

Corollary 4.12. If aditionally f is etale and p smooth of relative dimension
1 then q is smooth of relative dimension 1.

5 proof of theorem 4.3

We also have that Y1(N)Z[ 1
N

] is of finite presentation by construction, it is also

separated because it is affine6. So we only have to show that it Y1(N)Spec[1N ]

is smooth of relative dimension 1 over Z[ 1
N

]. Now we have seen in example 3
that the theorem is true for N = 4, 5. First we are going to proof the theorem

5In fact this is implied by (1) and (2). Also it suffices to assume f is surjective, flat
and locally of finite presentation, see the stacks project for more details.

6We can also say that it is separated because the map to Y≥(4) can be written as a
closed immersion followed by an open immersion and the latter space if affine. In this we
don’t use that Y1(N)Z[ 1

N ] is affine.
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only forN ≥ 4 andN coprime to 10. Now consider the commutative diagram:

E1(4)Z[ 1
4N ]

[N ]∗

��

= E1(N)Z[ 1
4N ]

[4]∗

��
Y1(4)Z[ 1

4N ]

''PPPPPPPPPPP
Y1(N)Z[ 1

4N ]

wwnnnnnnnnnnnn

SpecZ[ 1
4N

]

Now the composition of the leftmost two maps is smooth of relative dimension
1 because one is smooth of relative dimension 1 and the other etale. Also
the top right map is etale and surjective. So we can apply corrollary 4.12
to see that Y1(N)Z[ 1

4N
] is smooth or relative dimension 1 over SpecZ[ 1

4N
].

Repeating the argument with 4 replaced by 5 we see that Y1(N)Z[ 1
5N

] is
smooth or relative dimension 1 over SpecZ[ 1

5N
] so as a conclusion we see

that Y1(N)Z[ 1
N

] is smooth or relative dimension 1 over SpecZ[ 1
N

]. Now that
we have seen that the theorem is true for all integers coprime to 10 and bigger
then 4 we can proof it for arbitrary N ≥ 4 by chosing primes p, q > N . We
know that the theorem is true for p, q so repeating the argument above by
replacing 4 by p and 5 by q the full theorem follows.

13



A Universal pairs and representability

This section is a reformulation of a small part of the theory in Mac Lane
[1998][Chapter III] in terms contravariant functors and without the explicit
mention of comma category or universal arrow. The goals is to discuss the
link between universal pairs and representation of a functor.

Definition A.1. Let C be a category and K : C → Sets a contrariant
functor. Then we define the category (∗ ↓ K) to be the category wich has
object pairs (c, s) with C ∈ K an object and s ∈ K(c) an element. The
morphisms g : (c1, s1) → (c2, s2) (∗ ↓ K) are morphisms g : c1 → c2 in C
such that K(g)(s2) = s1. A universal pair for K is a terminal object in the
category (∗ ↓ K).

Definition A.2. Let C be a category with small homsets 7 and K : C →
Sets a contrariant functor. Then a representation of K is a pair (r, φ) with
r ∈ K an object and φ : homC(,r)→ K a natural isomorphism. The object
r is called the representing object and K is called representable if such a
representation exist.

The proposition below is the reason for this appendix and is basically
proposition III.2 from Mac Lane [1998]

Proposition A.3. Let C be a category with small homsets and K : C → Sets
a contravariant functor. If (c, s) is a universal pair for K then the natural
transformation φ : homC(,c)→ K whose compenent at d ∈ C is given by

φd : homC(d, c)→ K(d) (8)

g 7→ K(g)(s) (9)

is a representation of K and every representation of K is obtained from
exactly one universal pair.
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