The rational group structure of modular Jacobians with applications to torsion points on elliptic curves over number

fields

Maarten Derickx

¹Algant (Leiden, Bordeaux and Milano)

LMFDB Workshop 05-06-2014

Talk will only start after you opened:

bit.ly/rat-points-mod-jac

- Introduction
- ② Determining $J_H(\mathbb{Q})$
 - When has $J_H(\mathbb{Q})$ rank 0
 - Determining $J_H(N)(\mathbb{Q})_{tors}$
- 3 Application to torsion points on elliptic curves (with Mark van Hoeij)

Definitions and notation

- $N \in \mathbb{N}_{>5}$, $H \subseteq \mathbb{Z}/N\mathbb{Z}^*$
- K a field E/K and E'/K elliptic curves (EC).
- E(K)[N] are the points of order N
- E(K)[N]' are the points of order **exactly** N.
- $Y_1(N)(K) := \{(E, p) \mid E/K \text{ EC}, p \in E(K)[N]'\} / \sim.$
- $n \in \mathbb{Z}/N\mathbb{Z}^*$ acts on $Y_1(N)$ by sending (E, p) to (E, np)
- $Y_H := Y_1(N)/H$, $Y_0(N) = Y_H$ with $H = \mathbb{Z}/N\mathbb{Z}^*$.
- Let $p \in E(K)[N]'$ and $p' \in E'(K)[N]'$ then $(E, p) \sim_H (E', p')$ if there exists $\phi : E \tilde{\rightarrow} E'$ and $n \in H$ such that $\phi(p) = np'$.
- $Y_H(\bar{K}) \stackrel{1:1}{\longleftrightarrow} \{(E,p) \mid E/\bar{K} \text{ EC}, p \in E(\bar{K})[N]'\} / \sim_H$
- X_H , $X_0(N)$, $X_1(N)$ are the compactifications of Y_H , $Y_0(N)$, $Y_1(N)$
- J_H , $J_0(N)$, $J_1(N)$ are the Jacobians of X_H , $X_0(N)$, $X_1(N)$.

Why J_H is awesome

used to prove part of BSD

Theorem (Wiles, Breuil, Conrad, Diamond, Taylor)

Every EC / $\mathbb Q$ occurs as an isogeny factor of $J_0(N)$

Conjecture (Weak Birch and Swinnerton-Dyer (Weak BSD))

Let A/K be an abelian variety over a number field then the order of vanishing of L(A,s) at s=1 equals the rank of A(K)

Part of Weak BSD has been proven for modular abelian varieties \mathbb{Q} :

Theorem ($J_0(N)$: Kolyvagin, Logachev. $J_H(N)$: Kato)

Let A/\mathbb{Q} be an abelian variety isogenous to a sub abelian variety of $J_H(N)$ such that $L(A,1) \neq 0$ then $A(\mathbb{Q})$ has rank 0.

Why J_H is awesome

Studying questions about rational points on modular curves.

The structure of $J_H(\mathbb{Q})$ plays a crucial role in the proof of the following theorems:

Theorem (Mazur)

Let $E \to E'/\mathbb{Q}$ by an isogeny of prime degree p, then $p \leq$ 19 or p = 37, 43, 67, 163

Theorem (Mazur)

Let E/\mathbb{Q} be an EC then either

- $E(\mathbb{Q})_{tors} \cong \mathbb{Z}/N\mathbb{Z}$ for $1 \leq N \leq 10$, N = 12 or,
- $E(\mathbb{Q})_{tors} \cong \mathbb{Z}/2N\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ for $1 \leq N \leq 4$

Theorem (Merel)

Let E/K by an EC over a number field, then $\#E(K) < M_d$ for some constant M_d only depending on $d := [K : \mathbb{Q}]$

Why J_H is awesome

Studying questions about rational points on modular curves.

Let (E, p) be a pair such that it's H equivalence class is defined over \mathbb{Q} , then (E, p) gives a rational point on X_H . Let

$$\mu_{\infty}: X_H \to J_H$$

$$p \mapsto p - \infty$$

Let $\pi: J_H \to A$ be a map of abelian varieties s.t. $\#A(\mathbb{Q}) < \infty$.

 $\pi \circ \mu_{\infty}$ maps $X_H(\mathbb{Q})$ to the finite set $A(\mathbb{Q})$ this gives a lot of restrictions on $X_H(\mathbb{Q})$.

- Introduction
- ② Determining $J_H(\mathbb{Q})$
 - When has $J_H(\mathbb{Q})$ rank 0
 - Determining $J_H(N)(\mathbb{Q})_{tors}$
- Application to torsion points on elliptic curves (with Mark van Hoeij)

Theorem (Mazur)

 $J_0(N)$ has rank > 0 for N = 37, 43, 53, 61, 67 or N a prime ≥ 73 .

- Using magma (W. Stein) one can compute $L(J_1(N), 1)/\Omega_{J_1(N)}$
- $L(J_1(N), 1)/\Omega_{J_1(N)} \neq 0$ for all other primes N.
- So the proven part of BSD implies rank $J_1(N)(\mathbb{Q})=$ rank $J_H(\mathbb{Q})=$ 0 in the other cases.
- Same method allows everybody with access to magma to proof:

Proposition

If $N \in \mathbb{N}$, $N \neq 37, 43, 53, 57, 58, 61, 63, ...$ then rank $J_H(\mathbb{Q}) = 0$.

Remark: there are N such that $J_0(N)$ has rank 0 but $J_1(N)$ not.

- Introduction
- 2 Determining $J_H(\mathbb{Q})$
 - When has $J_H(\mathbb{Q})$ rank 0
 - Determining J_H(N)(ℚ)_{tors}
- Application to torsion points on elliptic curves (with Mark van Hoeij)

A lot is known for prime level.

Theorem (Mazur)

Let N be prime and $0, \infty$ the two cusps of $X_0(N)$ then $J_0(N)(\mathbb{Q})_{tors}$ is cyclic of order numerator $(\frac{N-1}{12})$ and generated by $0-\infty$.

Definition

 $Cl^{\mathbb{Q}-cusp,0} X_1(N)(\mathbb{Q}) \subseteq J_1(N)(\mathbb{Q})_{tors}$ is the subgroup generated by the differences of \mathbb{Q} -rational cusps in $X_1(N)(\bar{\mathbb{Q}})$.

Conjecture (Conrad, Edixhoven, Stein (CES))

Let N be a prime then $Cl^{\mathbb{Q}-cusp,0}$ $X_1(N)(\mathbb{Q})=J_1(N)(\mathbb{Q})_{tors}$

Theorem (Ohta)

The index of $Cl^{\mathbb{Q}-cusp,0}$ $X_1(N)(\mathbb{Q})$ in $J_1(N)(\mathbb{Q})_{tors}$ is a power of 2 for N prime.

Three different cuspidal class groups

Definition

- $Cl^{cusp} X_H \subseteq Pic X_H$ is the group variety of sums of cusps in $X_H(\bar{\mathbb{Q}})$.
- $Cl^{Gal(\mathbb{Q})-cusp} X_H \subseteq Cl^{cusp} X_H$ is the group variety of sums of $Gal(\mathbb{Q})$ -orbits of cusps in $X_H(\bar{\mathbb{Q}})$.
- $\operatorname{Cl}^{\mathbb{Q}-\operatorname{cusp}} X_H \subseteq \operatorname{Cl}^{\operatorname{Gal}(\mathbb{Q})-\operatorname{cusp}} X_H$ is the group variety of sums of \mathbb{Q} -rational cusps in $X_H(\bar{\mathbb{Q}})$.
- in general $Cl^{Gal(\mathbb{Q})-cusp} X_H \neq Cl^{cusp} X_H$
- computations suggest $Cl^{Gal(\mathbb{Q})-cusp} X_H(\mathbb{Q}) = Cl^{cusp} X_H(\mathbb{Q})$
- If N prime then $Cl^{\mathbb{Q}-cusp}\,X_H=Cl^{\mathrm{Gal}(\mathbb{Q})-cusp}\,X_H$ but for composite N one often has $Cl^{\mathbb{Q}-cusp}\,X_H(\mathbb{Q})\neq Cl^{\mathrm{Gal}(\mathbb{Q})-cusp}\,X_H(\mathbb{Q})$

The right generalization of the Conrad Edixhoven Stein conjecture

Definition

- $\operatorname{Cl}^{\operatorname{cusp}} X_H \subseteq \operatorname{Pic} X_H$ is the group variety of sums of cusps in $X_H(\bar{\mathbb{Q}})$.
- $Cl^{Gal(\mathbb{Q})-cusp} X_H \subseteq Cl^{cusp} X_H$ is the group variety of sums of $Gal(\mathbb{Q})$ -orbits of cusps in $X_H(\bar{\mathbb{Q}})$.
- $\mathrm{Cl}^{\mathbb{Q}-\mathit{cusp}}\,X_H\subseteq\mathrm{Cl}^{\mathrm{Gal}(\mathbb{Q})-\mathit{cusp}}\,X_H$ is the group variety of sums of \mathbb{Q} -rational cusps in $X_H(\bar{\mathbb{Q}})$.

Theorem (Manin-Drinfeld)

$$\mathrm{Cl}^{\mathit{cusp},0}\,X_H(ar{\mathbb{Q}})\subseteq J_H(ar{\mathbb{Q}})_{\mathit{tors}}$$

Conjecture (Generalized CES)

$$\mathsf{Cl}^{\mathit{cusp},0}\, X_H(\mathbb{Q}) = J_H(\mathbb{Q})_{\mathit{tors}}$$

Proposition

Let
$$N \le 55$$
. If $N \ne 24, 32, 33, 40, 48, 54$ then $\operatorname{Cl}^{\operatorname{cusp},0} X_1(\mathbb{Q}) = J_1(N)(\mathbb{Q})_{\operatorname{tors}}.$ If $N = 24, 32, 33, 40, 48$ respectively 54 then $[\operatorname{Cl}^{\operatorname{cusp},0} X_1(\mathbb{Q}) : \operatorname{Cl}^{\operatorname{csp},0}_{\mathbb{Q}} X_1(N)]$ is a divisor of $2, 2, 2, 4, 16$ respectively 3 .

- The proposition is proved using two different approaches for computing multiplicative upper bounds on $J_1(N)(\mathbb{Q})_{tors}$
- CES: count point on $J_1(N)(\mathbb{F}_p)$ for different values of p.
- Other approach based on finding hecke operators that kill $J_1(N)(\mathbb{Q})_{tors}$.
- Sometimes taking gcd of both multiplicative upper bounds gives a better result.

Killing the torsion

Proposition

Let $q \nmid 2N$ be a prime then $T_q - q \langle q \rangle - 1$ kills every element in $J_H(\mathbb{Q})_{tors}$.

Proof.

Since $q \neq 2$ we have $J_H(\mathbb{Q})_{tors} \hookrightarrow J_H(\mathbb{F}_q)$. So it suffices to prove the statement for $J_H(\mathbb{F}_q)$.

On $J_H(\mathbb{F}_q)$ on has $1=\operatorname{Frob}_q$ and $q=\operatorname{Ver}_q$. So the statement follows from $T_q-\operatorname{Ver}_q\langle q\rangle-\operatorname{Frob}_q=0$ (Eichler-Shimura).

Proposition

Let
$$N \le 55$$
. If $N \ne 24, 32, 33, 40, 48, 54$ then $Cl^{cusp,0} X_1(\mathbb{Q}) = J_1(N)(\mathbb{Q})_{tors}$. If $N = 24, 32, 33, 40, 48$ respectively 54 then $[J_1(N)(\mathbb{Q})_{tors} : Cl^{cusp,0} X_1(\mathbb{Q})]$

is a divisor of 2, 2, 2, 4, 16 respectively 3.

Idea behind the proof.

Use that $T_q - q\langle q \rangle - 1$ kills all elements in $J_1(N)(\mathbb{Q})$. Compute

 $M_q:=\ker(T_q-q\langle q\rangle-1:J_1(N)(\bar{\mathbb{Q}})_{tors} o J_1(N)(\bar{\mathbb{Q}})_{tors})$ for several small $q_1,\ldots,q_n
mid 2N$.

Compute $M = \cap_i M_{q_i}$ and let $M' \subset M$ be the ones invariant under complex conjugation.

If $M' \subset Cl^{cusp,0} X_1(\bar{\mathbb{Q}})$ then $Cl^{cusp,0} X_1(\mathbb{Q}) = J_1(N)(\mathbb{Q})_{tors}$. If $M' \nsubseteq Cl^{csp,0} X_1(N)$ then one can still get an upper bound on the index.

- Introduction
- 2 Determining $J_H(\mathbb{Q})$
 - When has $J_H(\mathbb{Q})$ rank 0
 - Determining $J_H(N)(\mathbb{Q})_{tors}$
- Application to torsion points on elliptic curves (with Mark van Hoeij)

A finite problem

Proposition

```
Let N \le 55, N \ne 37, 43, 53 then the rank of J_1(N)(\mathbb{Q}) is 0.
Let N \le 55, N \ne 24, 32, 33, 40, 48, 54 then Cl^{cusp,0} X_1(\mathbb{Q}) = J_1(N)(\mathbb{Q})_{tors}.
```

So for $N \le 55$, $N \ne 24, 32, 33, 37, 40, 43, 48, 53, 54$ finding all places of degree d (more general finding all g_d^r 's since places are g_d^0 's) is a finite problem, "just" compute the inverse of $X_1(N)^{(d)}(\mathbb{Q}) \to \operatorname{Pic}^d X_1(N)(\mathbb{Q})$.

Algorithm solving this finite problem

```
for D in \operatorname{Pic}^d X_1(N)(\mathbb{Q}) = \operatorname{Cl}^{\operatorname{cusp},0} X_1(\mathbb{Q}) do: write D = \sum n_i C_i with C_i cusps an n_i \in \mathbb{Z}. compute H := H^0(X_1(N), \mathcal{O}(\sum n_i C_i)) if \dim H = 0 then D is not linearly equivalent to a D' \geq 0. else |D| = \mathbb{P}(H) is a g_d^r with r = \dim H - 1
```

Finite but huge

$$\#J_1(39)(\mathbb{Q}) = 705125427552 \approx 7 \cdot 10^{11}, \qquad \text{genus} = 33$$
 $\#J_1(41)(\mathbb{Q}) \approx 1.1 \cdot 10^{17}, \qquad \text{genus} = 51$ $\#J_1(55)(\mathbb{Q}) \approx 2.5 \cdot 10^{22}, \qquad \text{genus} = 81$

Computing 7 $\cdot 10^{11} H^0$'s over \mathbb{Q} on a genus 33 curve takes too long¹. **Solution** If $\#J_1(N)(\mathbb{Q}) < \infty$ and $p \neq 2$ then ρ_2 is injective:

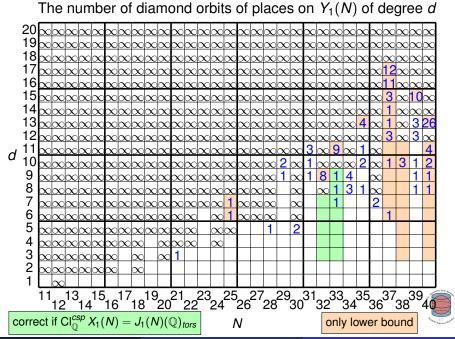
$$X_{1}(N)^{(d)}(\mathbb{Q}) \xrightarrow{u_{\mathbb{Q}}} \operatorname{Pic}^{d} X_{1}(N)(\mathbb{Q})$$

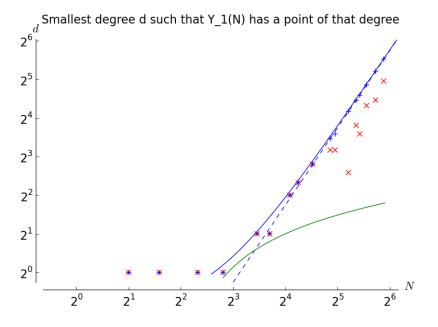
$$\downarrow^{\rho_{1}} \qquad \qquad \downarrow^{\rho_{2}}$$

$$X_{1}(N)^{(d)}(\mathbb{F}_{p}) \xrightarrow{u_{\mathbb{F}_{p}}} \operatorname{Pic}^{d} X_{1}(N)(\mathbb{F}_{p})$$

So we have to compute $u_{\mathbb{F}_p}$ exactly $\#X_1(N)^{(d)}(\mathbb{F}_p)$ times. And only $\# \operatorname{im} u_{\mathbb{F}_p} \cap \operatorname{im} \rho_2 \quad (\approx \# X_1(N)^{(d)})(\mathbb{Q})) \text{ times } \rho_2^{-1} \text{ and an } H^0 \text{ over } \mathbb{Q}^2.$

¹using the worlds three most powerful super computers for more than a month; ²even less because if $d < gon_{\odot} X_1(N)$ we can ignore those known to be in $\rho_2 \circ u_{\mathbb{Q}}$ and im $u_{\mathbb{Q}}$, e.g. sums of Gal(\mathbb{Q})-orbits of cusps.





Final remarks:

- The majority of the very sporadic points found have a non integral *j*-invariant and hence are non-*CM*.
- The places of degree < 13 on $X_1(37)$ cannot be written as sums of cusps.
- $\operatorname{gon}_{\mathbb{Q}}(X_1(25)) = 5$ but there are no functions of degree 6 or 7 in $\mathbb{Q}(X_1(25))$. Since $\#J_1(25)(\mathbb{Q}) < \infty$ there are only finitely many points of degree 6 and 7. Degree > gonality doesn't necessarily imply that there are ∞ points of that degree.
- The same strategy should also work for $X_0(N)$ or more generally X_H and N small we just did not write the code yet.

Thank you!

The list of explicit sporadic points can be found at:

www.math.fsu.edu/~hoeij/files/X1N/LowDegreePlaces The code which is still work in process can be found at:

https://github.com/koffie/mdsage
https://github.com/koffie/mdmagma

