
Computing modular Galois representations -
the modulo p approach (after Jinxiang Zeng)

Maarten Derickx 1

Universiteit Leiden
and

Université Bordeaux 1

Sage Days 51
22-26 July 2013

1Original slides by Jinxiang Zeng, modified by D.
Computing modular Galois representations

Computing Coefficients of modular forms

1 Introduction/Main Results
How fast can τ(p) be computed?
An algorithm work with finite fields
Complexity analysis
A lower bound on the number of generators of m ⊂ T

2 A First Description of the Algorithm
Congruence of Modular Forms
Galois Representations and Modular Forms
Computing The Ramanujan subspace

3 Future work

Computing modular Galois representations

Introduction/Main Results
Description of the Algorithm

Future work

Computing τ(p)

A probabilistic algorithm
Complexity analysis
Generators of maximal ideal of Hecke algebra

The discriminant modular form

Discriminant Modular Form

Let q := e2πiz , the discriminant modular form is defined by

∆(q) = q
∞∏

n=1

(1− qn)24 =
∞∑

n=1

τ(n)qn ∈ S12(SL2(Z))

where τ : Z→ Z is called Ramanujan tau function.

∆(q) plays a crucial role during the developments of theory of modular
forms. In this lecture we focus on the computational aspects of ∆(q).

Computing modular Galois representations

Introduction/Main Results
Description of the Algorithm

Future work

Computing τ(p)

A probabilistic algorithm
Complexity analysis
Generators of maximal ideal of Hecke algebra

The discriminant modular form

Arithmetic of the Ramanujan tau function

τ(mn) = τ(m)τ(n) for any integers satisfying (m,n) = 1.
τ(pn+1) = τ(p)τ(pn)− p11τ(pn−1) for any prime p,n ≥ 1.
|τ(p)| ≤ 2p11/2, Deligne’s bound.
τ(p) ≡ p(1 + p9) mod 25, τ(p) ≡ p(1 + p3)
mod 7,τ(p) ≡ 1 + p11 mod 691

Lehmer’s Conjecture

τ(n) 6= 0 for any n ≥ 1.

Serre: if τ(p) = 0 then p = hM − 1 with M = 2143753691,
(

h+1
23

)
= 1

and some h mod 49 ∈ {0,30,48}.

Computing modular Galois representations

Introduction/Main Results
Description of the Algorithm

Future work

Computing τ(p)

A probabilistic algorithm
Complexity analysis
Generators of maximal ideal of Hecke algebra

How fast can τ(p) be computed?

A question that Schoof asked to Edixhoven in 1995

Can we compute τ(p) for prime p in time polynomial in log p?

Theorem (Edixhoven, Couveignes, etc.)

For prime p, there exist algorithms to compute τ(p) in time polynomial
in log p.

work with complex number field, using numerical approximation.
work with finite fields, using CRT.

|τ(p)| ≤ 2p11/2 so τ(p) can be computed by computing τ(p) mod ` for
sufficiently many small primes ` (where small means O(log p).)

Computing modular Galois representations

Introduction/Main Results
Description of the Algorithm

Future work

Computing τ(p)

A probabilistic algorithm
Complexity analysis
Generators of maximal ideal of Hecke algebra

How fast can τ(p) be computed?

Generalization and explicit calculation
Bruin generalized the methods to modular forms for the groups of
the form Γ1(n).
Bosman implemented an algorithm using numerical
approximation C and computed

ρproj
l : GalQ̄/Q → PGL(Vl)

for ` ∈ {13,17,19}. This allows one to calculate ±τ(p) mod l
which he used to prove

τ(n) 6= 0, ∀n < 2 · 1019.

Computing modular Galois representations

Introduction/Main Results
Description of the Algorithm

Future work

Computing τ(p)

A probabilistic algorithm
Complexity analysis
Generators of maximal ideal of Hecke algebra

A probabilistic algorithm

Algorithm(Zeng 2012)

Following Couveignes’s idea, working with finite fields, we give a
probabilistic algorithm, which is rather simple and well suited for
implementation.

The following calculation was done using a personal computer.

level time (projective representation) time (entire representation)
`=13 several minutes one hour
`=17 several hours one day
`=19 several days less than four days
` = 29 waiting waiting
` = 31 several days several days

Computing modular Galois representations

Introduction/Main Results
Description of the Algorithm

Future work

Computing τ(p)

A probabilistic algorithm
Complexity analysis
Generators of maximal ideal of Hecke algebra

A probabilistic algorithm

Exact value of τ(p) mod `

Since we can compute the entire representation, the exact values of
τ(p) mod ` for ` ∈ {13,17,19} can be computed.

Nonvanishing of tau function

Since we can compute the projective representation for ` = 31, we can
provea

τ(n) 6= 0, for all n < 982149821766199295999 ≈ 9 · 1020

aBosman proved the nonvanishing holds for
n < 22798241520242687999 ≈ 2 · 1019

Computing modular Galois representations

Introduction/Main Results
Description of the Algorithm

Future work

Computing τ(p)

A probabilistic algorithm
Complexity analysis
Generators of maximal ideal of Hecke algebra

Complexity of the algorithm

Theorem(Zeng 2012)

For prime p, τ(p) can be computed in time O(log6+2ω+δ+ε p).
ω is a constant in [2,4], refers to that addition in Jacobian can be
done in time O(gω),
δ is a constant, measuring the heights of the points of the
Ramanujan subspace V`,
ε is any real positive number.

ω depends on the complexity of calculations in J1(l)(Fpe). Using
Khuri-Makdisi’s algorithm, the constant ω is 2.376. Our computation
suggests δ ≈ 3, although this is based on a very small sample
(l = 13,17,19)

Computing modular Galois representations

Introduction/Main Results
Description of the Algorithm

Future work

Computing τ(p)

A probabilistic algorithm
Complexity analysis
Generators of maximal ideal of Hecke algebra

On the generators of the maximal ideal

Theorem(Zeng 2012)

If ` ≥ 13 is prime and m = (l ,T1 − τ(1),T2 − τ(2),T3 − τ(3), . . .) ⊂ T,
then m can be generated by ` and Tn − τ(n) with n ≤ 2`+1

12 .

Remarks
It makes the algorithm faster. The previous known upper-bound
was (`2 − 1)/6, making step 5 very slow.
In practice the upper bound is even much better.

m = (`,T2 − τ(2)) for ` ∈ {13,17,19,29,37,41,43}
m = (`,T3 − τ(3)) for ` = 31

Computing modular Galois representations

Introduction/Main Results
Description of the Algorithm

Future work

Congruence of Modular Forms
Galois Representations
Computing The Ramanujan subspace

Congruence of Modular Forms

Theorem (Mazur, Ribet, Gross, Edixhoven etc.)

Let n, k ∈ Z+, F/F` finite extension, and f : T(n, k)→ F a surjective
ring morpism. Assume 2 < k ≤ `+ 1 and the associated Galois
representation ρf : Gal(Q/Q)→ GL2(F) is absolutely irreducible. Then
there is a unique ring morphism f2 : T(n`,2)→ F such that:

f2 is surjective, f2(Ti) = f (Ti), f2(< a >) = f (< a >)ak−2 for all
i ≥ 1 and any a satisfying (a,n`) = 1.
Vf := J1(n`)[ker f2] realizes ρf .

Remark
For the rest of this talk: f = ∆(q) mod `, so F = F`,
ker f2 =< `,Ti − τ(i) : i ≥ 1 > and V` := V∆,` = J1(`)[ker f2].

Computing modular Galois representations

Introduction/Main Results
Description of the Algorithm

Future work

Congruence of Modular Forms
Galois Representations
Computing The Ramanujan subspace

Galois Representation

Galois representation associated to ∆(q)

Let ρ` be the Galois representation associated to the newform ∆(q)

ρ` : Gal(Q/Q)→ GL2(F`)

then
For prime p 6= `:
Tr(ρ`(Frobp)) ≡ τ(p) mod ` and det(ρ`(Frobp)) ≡ p11 mod `.
The representation space (called Ramanujan subspace denoted
by V`) is

V` =
⋂

1≤k≤ `2−1
6

ker(Tk − τ(k), J1(`)[`])

Computing modular Galois representations

Introduction/Main Results
Description of the Algorithm

Future work

Congruence of Modular Forms
Galois Representations
Computing The Ramanujan subspace

Computing V` mod p: the strategy

1) Find an e s.t. V`(F̄p) = V`(Fpe)

2) Compute n := #J1(`)(Fpe)

3) Pick P ∈ J1(`)(Fpe) random.
4) Multiply P by n`−v`(n), and then repeatedly by ` until

P ∈ J1(`)[`]

5) Compute Q := f (P) for some surjection J1(`)[`]→ V`.
6) Repeat 3),4) and 5) till you find linearly independent

Q1,Q2 ∈ V` .

Computing modular Galois representations

Introduction/Main Results
Description of the Algorithm

Future work

Congruence of Modular Forms
Galois Representations
Computing The Ramanujan subspace

Step 1: find e s.t.: V`(F̄p) = V`(Fpe)

The characteristic polynomial of Frobp on V` is X 2− τ(p)X + p11

We need Frobp = IdV` so we can take:

e := min{t | t ≥ 1,X t = 1 ∈ F`[X]/(X 2 − τ(p)X + p11)}

Remark
Step 4 is very expensive if e is big. So we only compute V`
mod p for the p s.t. e is small.

Computing modular Galois representations

Introduction/Main Results
Description of the Algorithm

Future work

Congruence of Modular Forms
Galois Representations
Computing The Ramanujan subspace

Step 5: Computing the surjection J1(`)[`]→ V`

Let S ⊂ N s.t. m is generated by ` and Tn − τ(n) for n ∈ S.
Let An(X) be the characteristic polynomial of Tn on S2(Γ1(`)).
Write An(X) ≡ Bn(X) · (X − τ(n))en mod `, with en ≥ 1 and
An(τ(n)) 6≡ 0 mod `.
Let πS :=

∏
n∈S Bn(Tn), then for all P ∈ J1(`)[`] and all n ∈ S:

(Tn − τ(n))enπS(P) = 0.

If πS(P) 6= 0 then there are dn < en s.t.

Q :=

(∏
n∈S

(Tn − τ(n))dn

)
πS(P)

is a nonzero point in V` = J1(`)[`] ∩
⋂

n∈S ker Tn − τ(n).

Computing modular Galois representations

Introduction/Main Results
Description of the Algorithm

Future work

Congruence of Modular Forms
Galois Representations
Computing The Ramanujan subspace

Speeding up step 4

In step 4 we have to multiply a P ∈ J1(`)(Fpe) by a huge integer
(≈ peg). But in fact J1(`) is isogenous to

∏
f Af where f runs

through Galois conj. classes of newforms of S2(Γ1(`)) and
Af ⊂ J1(`) is the factor corresponding to f .
Instead of computing (`−v`NN)P where N := #J1(`)(Fpe)) we
can instead compute (`−v`N′N ′)T (P) where T ∈ T s.t.
T (J1(`)) ⊂ Af and N := #Af (Fpe)). Advantage: N ′ ≈ pe dim Af

Comparing dimensions for f ≡ ∆ mod `

Level ` 13 17 19 29 31 37 41 43 47 53 59
dim J1(`) 2 5 7 22 26 40 51 57 70 92 117
dim Af` 2 4 6 12 4 18 6 36 66 48 112

Computing modular Galois representations

Introduction/Main Results
Description of the Algorithm

Future work

Congruence of Modular Forms
Galois Representations
Computing The Ramanujan subspace

Special case ` ≡ 1 mod 10

Let f ≡ 1 mod ` be a newform and χ be the character
associated to f then the characteristic polynomial of Frobp on V`
is X 2 − τ(p) + χ(p)p = X 2 − τ(p) + p11. In other words
χ(p) ≡ p10 mod `, in particular if ` ≡ 1 mod 10 then
χ(〈d (l−1)/10〉) ≡ d (l−1) = 1 mod `. This shows that
〈d (l−1)/10〉f = χ(〈d (l−1)/10〉) ≡ d (l−1)f = f . So Vl can also be
found in JH(`), the jacobian of X1(`)/〈d (l−1)/10〉 with d a
generator of F∗` .

Comparing dimensions for f ≡ ∆ mod `

Level ` 13 17 19 29 31 37 41 43 47 53 59
dim J1(`) 2 5 7 22 26 40 51 57 70 92 117
dim Af` 2 4 6 12 4 18 6 36 66 48 112
dim JH(`) 6 11

Computing modular Galois representations

Introduction/Main Results
Description of the Algorithm

Future work

Congruence of Modular Forms
Galois Representations
Computing The Ramanujan subspace

How to compute in Tp in J1(`)(Fq)

Computations are J1(`)(Fq) done using the identification:

J1(`)(Fq) = Cl0Fq(X1(`))

and using magma’s function field+class group capabilities.
There exist explicit algebraic model’s

Fq(X1(`)) ∼= Fq(x)[y]/(f`(x , y))

that also allows you to go back and fort between zeros of
f`(x , y) and pairs (E ,P).
To compute Tp(x) for D ∈ Cl0Fq(X1(`)), we write D =

∑
niQi

with Qi places of Fq(X1(`)), find the pair (Ei ,Pi) corresponding
to each Qi) and compute Tp(Ei ,Pi) =

∑
G(Ei/G,Pi mod G)

Computing modular Galois representations

Introduction/Main Results
Description of the Algorithm

Future work

Congruence of Modular Forms
Galois Representations
Computing The Ramanujan subspace

T. and V. Dokchitser’s method for finding frobenius

Let P(t) ∈ Z[t] be a polynomial with splitting field L, denote it’s roots by
a1, . . . ,an. For C ⊂ Gal(L/Q) a conjugacy class and h ∈ Q[X] define

Γh
C(t) :=

∏
σ∈C

(t −
∑

i

h(ai)σ(ai)) ∈ Q[X]

Theorem

The set of h with degh ≤ n− 1 s.t. for all C,C′ : Res(Γh
C , Γ

h
C′) 6= 0 is

open and Zarisky dense in the polynomials of deg ≤ n − 1.
For p not deviding any of the resultants Res(Γh

C , Γ
h
C′) and also not

dividing the leading coefficient of P(t) one has:

Frobp ∈ C ⇔ ΓC(TrFp[t]/(P(t))h(t)tp) ≡ 0 mod p

Computing modular Galois representations

Introduction/Main Results
Description of the Algorithm

Future work

Congruence of Modular Forms
Galois Representations
Computing The Ramanujan subspace

Equation

An equation2 for the projective representation of ∆ mod 31 :

x32−4x31−155x28 +713x27−2480x26 +9300x25−5921x24+

24707x23+127410x22−646195x21+747906x20−7527575x19+

4369791x18 − 28954961x17 − 40645681x16 + 66421685x15−
448568729x14+751001257x13−1820871490x12+2531110165x11−
4120267319x10+4554764528x9−5462615927x8+4607500922x7−
4062352344x6+2380573824x5−1492309000x4+521018178x3−

201167463x2 + 20505628x − 1261963

2Thanks to Mark van Hoeij for finding this smaller equation, the equation
produced by the algorithm had coefficients of 700 digits!

Computing modular Galois representations

Introduction/Main Results
Description of the Algorithm

Future work

Future work

Operation in J1(`)(Fq) is very slow (uing Heß’s algorithm which is
in magma), it would be interesting to know whether using
Khuri-Makdisi’s algorithm will be faster.
Computing the points in V` modulo a single prime p is possible if e
is very small using the current implementation for ` = 29 and
` = 41. But this takes 6 hours for ` = 41 so probably something
smarter is needed to reconstruct the entire polynomial. Maybe
p-adically lifting these points will be faster then trying a lot of
different primes.

Computing modular Galois representations

Introduction/Main Results
Description of the Algorithm

Future work

Future work

How to reduce P(t)?

The polynomial P(t) has degree `2 − 1 and huge coefficients as well.
The calculation of ΓC(t) for all the conjugacy classes C ⊂ GL2(F`), not
only took a lot of time but also a lot of memory! Actually the
coefficients of ΓC(t) are much bigger then those of P(t). It becomes a
bottleneck when dealing with higher levels. So a good algorithm for
reducing the size of P(t) (after we have computed it) will be usefull.

The Magma code of our implementation can be downloaded from:

http://faculty.math.tsinghua.edu.cn/˜lsyin/
publication.htm

Computing modular Galois representations

http://faculty.math.tsinghua.edu.cn/~lsyin/publication.htm
http://faculty.math.tsinghua.edu.cn/~lsyin/publication.htm

Introduction/Main Results
Description of the Algorithm

Future work

The end!

τ(101000 + 1357) = ±18 mod 31

Thank you very much!

Computing modular Galois representations

	Introduction/Main Results
	How fast can (p) be computed?
	An algorithm work with finite fields
	Complexity analysis
	A lower bound on the number of generators of mT

	A First Description of the Algorithm
	Congruence of Modular Forms
	Galois Representations and Modular Forms
	Computing The Ramanujan subspace

	Future work

