Gonalities of Modular Curves

Maarten Derickx¹ Mark van Hoeij²

¹Algant (Leiden, Bordeaux and Milano)

²Florida State University

17th Workshop on Elliptic Curve Cryptography 16 - 18 Sept. 2013 Leuven

Outline

Preliminaries (what are modular curves)

• Algebraic description of the modular curve $Y_1(N)$

2 Modular Units

3 Gonalities

- Intro
- Computing gonalities
- Motivation

Main idea behind modular curves

Let
$$N \in \mathbb{N}$$
 then the set:

$$\begin{cases}
Pairs (E, P) \text{ of elliptic} \\
curve, \text{ point of order} \\
N
\end{cases} / \sim$$
has a natural structure of a curve. One can study all pairs (E, P) at the same time by studying the curve C .

 $(E_1, P_1) \sim (E_2, P_2)$ if there exists an isomorphism $\phi : E_1 \rightarrow E_2$ such that $\phi(P_1) = P_2$.

Example: Multiplication by -1 gives $(E, P) \sim (E, -P)$

Definition (Tate normal form)

Let $b, c \in K$ then $E_{(b,c)}$ is the curve $Y^2 + cXY + bY = X^3 + bX^2$

Remark The discriminant of $E_{(b,c)}$ is: $\Delta(b,c) := -b^3(16b^2 + (8c^2 - 36c + 27)b + (c-1)c^3)$

Proposition

Let E/K an elliptic curve and $P \in E(K)$ of order $N \ge 4$. Then there are unique b, $c \in K$ and an unique isomorphism $\phi : E \to E_{(b,c)}$ such that $\phi(P) = (0,0)$

$$E_{(b,c)}: Y^2 + cXY + bY = X^3 + bX^2$$

Proposition

Let E/K an elliptic curve and $P \in E(K)$ of order ≥ 4 . Then there are unique b, $c \in K$ and an unique isomorphism $\phi : E \to E_{(b,c)}$ such that $\phi(P) = (0,0)$

Proof.

•
$$E: Y^2 + a_1XY + a_3Y = X^3 + a_2X^2 + a_4X + a_6, P = (x, y)$$

- Translate *P* to (0,0).
- $E: Y^2 + a'_1XY + a'_3Y = X^3 + a'_2X^2 + a'_4X, P = (0,0)$
- Make the tangent line at (0,0) horizontal

•
$$E: Y^2 + a_1''XY + a_3''Y = X^3 + a_2''X^2, P = (0,0)$$

$$E_{(b,c)}: Y^2 + cXY + bY = X^3 + bX^2$$

Proposition

Let E/K an elliptic curve and $P \in E(K)$ of order ≥ 4 . Then there are unique b, $c \in K$ and an unique isomorphism $\phi : E \to E_{(b,c)}$ such that $\phi(P) = (0,0)$

Proof.

•
$$E: Y^2 + a_1''XY + a_3''Y = X^3 + a_2''X^2, P = (0,0)$$

•
$$Y \mapsto u^3 Y, X \mapsto u^2 X$$
 with $u = a_2''/a_3''$

•
$$E: Y^2 + \frac{a_1''a_2''}{a_3''}XY + \frac{a_2''^3}{a_3''^2}Y = X^3 + \frac{a_2''^3}{a_3''^2}X^2, P = (0,0)$$

•
$$E = E_{(b,c)}, c = \frac{a_1''a_2''}{a_3''}, b = \frac{a_2'^3}{a_3''^2}, P = (0,0)$$

$$E_{(b,c)}: Y^2 + cXY + bY = X^3 + bX^2$$

Proposition

Let E/K an elliptic curve and $P \in E(K)$ of order ≥ 4 . Then there are unique b, $c \in K$ and an unique isomorphism $\phi : E \to E_{(b,c)}$ such that $\phi(P) = (0,0)$

$$\left\{\begin{array}{ll} b,c \in \mathbb{A}^2(\mathcal{K}) \text{ s.t} \\ \Delta(b,c) \neq 0 \end{array}\right\} \underbrace{1:1}_{\leq 4} \left\{\begin{array}{l} \text{Pairs } (E,P) \text{ of elliptic} \\ \text{curve, point of order} \\ \geq 4 \end{array}\right\} /$$

Definition

Let $N \in \mathbb{N}_{\geq 4}$ and char $K \nmid N$ then the modular curve $Y_1(N)_K \subset \mathbb{A}^2_K$ is the curve corresponding to the (E, P) where P has exactly order N.

Definition (Division polynomials for $E_{(b,c)}$ at P = (0:0:1))

Define $\Psi_n, \Phi_n, \Omega_n \in \mathbb{Z}[b, c]$ by:

•
$$\Psi_1 = 1, \Psi_2 = b, \Psi_3 = b^3, \Psi_4 = b^5(c-1)$$

• $\Psi_{m+n}\Psi_{n-m}\Psi_r^2 = \Psi_{n+r}\Psi_{n-r}\Psi_m^2 - \Psi_{m+r}\Psi_{m-r}\Psi_n^2$

•
$$n = m + 1, r = 1 \Rightarrow \Psi_{2m+1} = \Psi_{m+2}\Psi_m^3 - \Psi_{m-1}\Psi_{m+1}^3$$

•
$$n = m+2, r = 1 \Rightarrow b\Psi_{2m+2} = \Psi_{m-1}(\Psi_{m+3}\Psi_m^2 - \Psi_{m+1}\Psi_{m+2}^2)$$

•
$$\Phi_n = -\Psi_{n-1}\Psi_{n+1}\Omega_n = \frac{\Psi_{2n}}{2\Psi_n} - \Psi_n(c\Phi_n + b\Psi_n^2)$$

Proposition

Let $N \in \mathbb{Z}$ and view $E_{(b,c)}$ as an elliptic curve over K(b,c) (or $\mathbb{Z}[b, c, \frac{1}{\Delta(b,c)}]$) then $N(0:0:1) = (\Phi_N \Psi_N : \Omega_N : \Psi_N^3)$

$$N(0:0:1) = (\Phi_N \Psi_N : \Omega_N : \Psi_N^3)$$

Proposition

$$\begin{array}{l} \textit{If} (b,c) \in \mathbb{A}^2(K), \, \Delta(b,c) \neq 0 \textit{ then} \\ N(0:0:1) = (0:1:0) \Leftrightarrow \Psi_N(b,c) = 0 \end{array}$$

Define F_N by removing form Ψ_N all factors coming from some Ψ_d with d|N, and all common factors with $\Delta(b, c)$.

Corollary

If char $K \nmid N$ then $Y_1(N)_K \subset \mathbb{A}^2_K$ is given by $F_N = 0$, $\Delta(b, c) \neq 0$.

Definition

 $X_1(N)_K$ is the projective closure of $Y_1(N)$, i.e. the unique smooth projective curve whose function field is $K(Y_1(N))$. The cusps are $X_1(N)_K \setminus Y_1(N)_K$.

Example N = 5

$$\Delta(b,c) = -b^3(16b^2 + (8c^2 - 36c + 27)b + (c-1)c^3)$$

•
$$\Psi_5 = (-b + c - 1)b^8$$

•
$$F_5 = -b + c - 1$$

•
$$Y_1(N)$$
 given by $c = b + 1$, $\Delta(b, c) \neq 0$

•
$$\Delta(b, b+1) = -b^5(b^2+11b-1)$$

 X₁(N) ≅ ℙ¹, cusps are the points given by b = 0, b = ∞ and b² + 11b - 1 = 0, so not all cusps are always defined over K.

Definition

 $f \in K(X_1(N))$ is called a modular unit if all its poles and zero's are cusps. Two modular units f, g are called equivalent if $f/g \in K^*$.

Example (N=5)

The cusps of $X_1(5)$ where $b = 0, b = \infty$ and $b^2 + 11b - 1 = 0$. Over \mathbb{Q} , *b* and $b^2 + 11b - 1$ form a multiplicative basis for all modular units up to equivalence, over \mathbb{C} one needs $b + (5\sqrt{5} + 11)/2$ as extra generator.

Example

If $N \nmid M$ then $\Psi_M \in K(X_1(N)) = K(b)[c]/F_N$ is a modular unit. Because if $\Psi_M(b, c) = 0$ for $(b, c) \in Y_1(N)(\bar{K})$ then $(0:0:1) \in E_{(b,c)}(\bar{K})$ has order N and order dividing M.

Definition

 $f \in K(X_1(N))$ is called a modular unit if all its poles and zero's are cusps. Two modular units f, g are called equivalent if $f/g \in K^*$.

Conjecture (Hoeij, D.)

 $b, \Delta, \Psi_4, \Psi_5, \dots, \Psi_{\lfloor N/2 \rfloor + 1}$ form a multiplicative basis for the modular units over \mathbb{Q} up to equivalence.

We used a computer to verify the conjecture for $N \le 100$.

Intro Computing gonalities Motivation

Definition of gonality

Definition

Let *K* be a field and C/K be a smooth projective curve then the *K*-gonality of *C* is:

 $\operatorname{gon}_{K}(C) := \operatorname{min}_{f \in K(C) \setminus K}[K(C) : K(f)] = \operatorname{min}_{f \in K(C) \setminus K} \operatorname{deg} f$

Example (N=5)

$$K(X_1(5)) = K(c)[b]/(-b+c-1) = K(c) \text{ so } gon_K(X_1(5)) = 1$$

Example

For an elliptic curve E/K one has $gon_K(E) = 2$.

Preliminaries (what are modular curves) Intro Modular Units Com Gonalities Motiv

Intro Computing gonalities Motivation

General bounds

Theorem (Abramovich)

Let N be a prime then: $gon_{\mathbb{C}}(X_1(N)) \geq \frac{7}{1600}(N^2 - 1).$

For general N:

$$\operatorname{gon}_{\mathbb{C}}(X_1(N)) \geq \frac{6}{\pi^2} \frac{7}{1600} N^2.$$

Theorem (Poonen)

If char
$$K=p>0$$
 then $ext{gon}_K(X_1(N))\geq \sqrt{rac{6}{\pi^2}rac{p-1}{24(p^2+1)}}N$

Proposition

$$\operatorname{gon}_{\mathcal{K}}(X_1(N)) \leq \frac{N^2}{24}$$

Intro Computing gonalities Motivation

Lowerbound for the $\mathbb{Q}\mbox{-}gonality$ by computing the \mathbb{F}_ℓ gonality

Proposition

Let C/\mathbb{Q} be a smooth projective curve and ℓ be a prime of good reduction of C then:

 $\operatorname{\mathsf{gon}}_{\mathbb{Q}}(\mathcal{C}) \geq \operatorname{\mathsf{gon}}_{\mathbb{F}_\ell}(\mathcal{C}_{\mathbb{F}_\ell})$

To use this we need to know how compute the \mathbb{F}_{ℓ} gonality of *C*. Let $\operatorname{div}_{d}^{+} C_{\mathbb{F}_{\ell}} \subseteq \operatorname{div}^{+} C_{\mathbb{F}_{\ell}}$ be the set of effective divisors of degree *d*. Then $\#(\operatorname{div}_{d}^{+} C_{\mathbb{F}_{\ell}}) < \infty$. The following algorithm computes the \mathbb{F}_{ℓ} -gonality:

Step 1 set d = 1

Step 2 While for all $D \in \operatorname{div}_d^+ C_{\mathbb{F}_\ell}$: dim $H^0(C, D) = 1$ set d = d + 1Step 3 Output d.

This is already becomes to slow for computing $gon_{\mathbb{F}_2}(X_1(29))$.

Computing gonalities

Divisors dominating all functions of degree < d

 C/\mathbb{F}_l a smooth proj. geom. irr. curve. View $f \in \mathbb{F}_l(C)$ as a map $f \colon C \to \mathbb{P}^1_{\mathbb{F}_i}$. For $g \in \operatorname{Aut} C$, $h \in \operatorname{Aut} \mathbb{P}^1_{\mathbb{F}_i}$: deg $f = \deg h \circ f \circ g$

Definition

A set of divisors $S \subseteq \text{div } C$ dominates all functions of degree $d \leq d$ if for all dominant $f \colon C \to \mathbb{P}^1_{\mathbb{F}_l}$ of degree $d \leq d$ there are $D \in S$, $g \in Aut C$ and $h \in Aut \mathbb{P}^1_{\mathbb{F}}$, such that div $h \circ f \circ g \ge -D$

Proposition

If $S \subseteq \text{div } C$ dominates all functions of degree $\leq d$ then $\operatorname{gon}_{\mathbb{F}_l} C \geq \min(d+1, \inf_{D \in S, f \in H^0(C,D),}$ $\deg f$). deaf≠0

Example: div d C dominates all functions of degree $\leq d$.

Intro Computing gonalities Motivation

A smaller set of divisors dominating functions of degree $\leq d$

Proposition

Define
$$n := \lceil \#C(\mathbb{F}_l)/(l+1) \rceil$$
 and $D := \sum_{p \in C(\mathbb{F}_l)} p$. Then
 $\operatorname{div}_{d-n}^+ C + D := \{s + D \mid s \in \operatorname{div}_{d-n}^+ C\}$
dominates all functions of degree $\leq d$.

Proof.

There is a $g \in \operatorname{Aut} \mathbb{P}^1_{\mathbb{F}_l}$ such that $g \circ f$ has poles at at least n distinct points in $C(\mathbb{F}_l)$. If f has degree $\leq d$ then there is an element $s \in \operatorname{div}_{d-n}^+ C$ such that $\operatorname{div} g \circ f \geq -s - D$.

Intro Computing gonalities Motivation

An even smaller set of divisors dominating functions of degree $\leq d$

Proposition

If $S \subseteq \text{div } C$ dominates all functions of degree $\leq d$ and $S' \subseteq \text{div } C$ is such that for all $s \in S$ there are $s' \in S'$ and $g \in \text{Aut } C$ such that $g(s') \geq s$. Then S' also dominates all functions of degree $\leq d$.

This means that only 1 representative of each Aut *C* orbit of *S* is needed. This will be useful in the cases $C = X_1(N)$. In these cases we have an automorphism of *C* for each $d \in (\mathbb{Z}/N\mathbb{Z})^*/\{\pm 1\}$ given by $(E, P) \mapsto (E, dP)$.

Intro Computing gonalities Motivation

List of computed gonalities

The \mathbb{Q} -gonalities of $X_1(N)$ for $N \leq 40$ are:

N	1	2	3	4	5	6	7	8	9	10
gon	1	1	1	1	1	1	1	1	1	1
N	11	12	13	14	15	16	17	18	19	20
gon	2	1	2	2	2	2	4	2	5	3
N	21	22	23	24	25	26	27	28	29	30
gon	4	4	7	4	5	6	6	6	11	6
N	31	32	33	34	35	36	37	38	39	40
gon	12	8	10	10	12	8	18	12	14	12

Let *p* be the smallest prime s.t. $p \nmid N$. Then gon_Q $X_1(N) = \text{gon}_{\mathbb{F}_p} X_1(N)$ for the above *N*.

For all $2 \le N \le 40$ there exists a modular unit *f* with deg $f = \operatorname{gon}_{\mathbb{Q}} X_1(N)$

The gonalities for $N \le 22$ and N = 24 were already known.

Preliminaries (what are modular curves) Intro Modular Units Computing gonalities Gonalities Motivation

What is known

 $\mathcal{S}(d) := \{ p \text{ prime} \mid \exists K / \mathbb{Q} \colon [K : \mathbb{Q}] \leq d, \exists E / K \colon E(K) \, [p] \neq 0 \}$

$$Primes(n) := \{p \text{ prime} | p \le n\}$$

- S(d) is finite (Merel)
- $S(d) \subseteq Primes((3^{d/2} + 1)^2)$ (Oesterlé)
- *S*(1) = *Primes*(7) (Mazur)
- S(2) = Primes(13) (Kamienny, Kenku, Momose)
- *S*(3) = *Primes*(13) (Parent)
- *S*(4) = *Primes*(17) (Kamienny, Stein, Stoll) to be published.

New results

.

$$S(d) := \{p \text{ prime } | \exists K / \mathbb{Q} \colon [K : \mathbb{Q}] \le d, \exists E / K \colon E(K) [p] \neq 0\}$$
$$Primes(n) := \{p \text{ prime } | p \le n\}$$

• S(5) = Primes(19) (Kamienny, Stein, Stoll and D.)

• $S(6) \subseteq Primes(23) \cup \{37\}$ (Kamienny, Stein, Stoll and D.)

Intro Computing gonalities Motivation

Relation between $Y_1(N)$ and S(d)

The 1-1 correspondence

 $\psi : \{(E, P) \mid E/K, P \in E(K) \text{ of order } N\}/_{\sim} \xleftarrow{1:1} Y_1(N)(K)$ gives $S(d) := \{p \text{ prime } \mid \exists K/\mathbb{Q} \colon [K : \mathbb{Q}] \leq d, \exists E/K \colon E(K)[p] \neq 0\} =$ $= \{p \text{ prime } \mid \exists K/\mathbb{Q} \colon [K : \mathbb{Q}] \leq d, Y_1(p)(K) \neq \emptyset\}$ So we want to know whether $Y_1(p)$ has any points of degree

So we want to know whether $Y_1(p)$ has any points of degree $\leq d$ over \mathbb{Q} .

A useful proposition of Michael Stoll

Proposition

Let C/\mathbb{Q} be a smooth proj. geom. irred. curve with Jacobian J, $d \ge 1$ and ℓ a prime of good reduction for C. Let $P \in C(\mathbb{Q})$ and $\iota : C^{(d)} \to J$ the canonical map normalized by $\iota(dP) = 0$. Suppose that:

- there is no non-constant $f \in \mathbb{Q}(C)$ of degree $\leq d$.
- **2** $J(\mathbb{Q})$ is finite.

Solution The intersection of *ι*(*C*^(d)(𝔽_ℓ)) ⊆ *J*(𝔽_ℓ) with the image of *J*(𝔇) under reduction mod *ℓ* is contained in the image of *C*^d(𝔽_ℓ).

Then $C(\mathbb{Q})$ is the set of points of degree $\leq d$ on C.

Preliminaries (what are modular curves)	
Modular Units	Computing gonalities
Gonalities	Motivation

Thank you!

