Gonalities of Modular Curves

Maarten Derickx¹ Mark van Hoeij²

¹Algant (Leiden, Bordeaux and Milano)

²Florida State University

Intercity Number Theory Seminar 01-03-2013

Gonalities

- Lower bounds
- Upper bounds
- Summary

 $\mathcal{S}(d) := \{ p \text{ prime} \mid \exists K / \mathbb{Q} \colon [K : \mathbb{Q}] \leq d, \exists E / K \colon E(K) \, [p] \neq 0 \}$

 $Primes(n) := \{p \text{ prime} | p \le n\}$

- S(d) is finite (Merel)
- $S(d) \subseteq Primes((3^{d/2} + 1)^2)$ (Oesterlé)
- *S*(1) = *Primes*(7) (Mazur)
- S(2) = Primes(13) (Kamienny, Kenku, Momose)
- *S*(3) = *Primes*(13) (Parent)
- S(4) = Primes(17) (Kamienny, Stein, Stoll) to be published.

 $\mathcal{S}(d) := \{ p \text{ prime} \mid \exists \mathcal{K} / \mathbb{Q} \colon [\mathcal{K} : \mathbb{Q}] \leq d, \, \exists \mathcal{E} / \mathcal{K} \colon \mathcal{E}(\mathcal{K}) \, [p] \neq 0 \}$

 $Primes(n) := \{p \text{ prime} | p \le n\}$

• S(5) = Primes(19) (Kamienny, Stein, Stoll and D.)

Motivation Modular Curves Gonalities

S(6) ⊆ *Primes*(23) ∪ {37, 73} (Kamienny, Stein, Stoll and D.)

73 is the only prime p for which we do not know whether $p \in S(6)$.

j-invariant

Over \mathbb{C} the *j*-invariant gives a 1-1 correspondence:

 $j: \ \{E/\mathbb{C}\}/_{\sim} \longleftrightarrow \mathbb{C}$

Now $\mathbb{C} \cong \mathbb{H}/SL_2(\mathbb{Z})$ where $SL_2(\mathbb{Z})$ acts on \mathbb{H} by:

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \tau = \frac{a\tau + b}{c\tau + d}$$

Analytic description: $E = \mathbb{C}/(\tau \mathbb{Z} + \mathbb{Z}), q = e^{2\pi i \tau}$

 $j(E) = q^{-1} + 744 + 196884q + 21493760q^2 + \dots$

Algebraic description: $E = Z(y^2 - x^3 - ax - b)$

$$j(E) = \frac{1728 \cdot 4a^3}{4a^3 + 27b^2}$$

Analytic description of the modular curve $Y_1(N)$

$$\Gamma_1(N) := \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in SL_2(\mathbb{Z}) \mid \begin{bmatrix} a & b \\ c & d \end{bmatrix} \equiv \begin{bmatrix} 1 & * \\ 0 & 1 \end{bmatrix} \mod N \right\}$$

 $Y_1(N)(\mathbb{C}) := \mathbb{H}/\Gamma_1(N)$

There is again a 1-1 correspondence:

 $\psi: \{(E, P) \mid E/\mathbb{C}, P \in E \text{ of order } N\}/_{\sim} \xleftarrow{1:1} Y_1(N)(\mathbb{C})$

Analytic description $(E, P) = (\mathbb{C}/(\tau\mathbb{Z} + \mathbb{Z}), 1/N \mod \tau\mathbb{Z} + \mathbb{Z})$

$$\psi(E, P) = \tau \mod SL_2(\mathbb{Z})$$

Algebraic description of the modular curve $Y_1(N)$

Proposition

Let K be a field, E/K and $P \in E(K)$ of order $N \ge 4$. Then there are unique b, $c \in K$ such that $E \cong Z(Y^2 + cXY + bY - X^3 - bX^2)$ and P = (0,0)

•
$$R := \mathbb{Z}[b, c, \frac{1}{\Delta}]$$
 with
 $\Delta := -b^3(16b^2 + (8c^2 - 36c + 27)b + (c - 1)c^3)$
• E/R elliptic curve given by $Y^2 + cXY + bY = X^3 + bX^2$
• $P := (0:0:1)$

• Let $\Phi_N, \Psi_N, \Omega_N \in R$ be s.t. $(\Phi_N \Psi_N : \Omega_N : \Psi_N^3) = NP$

The equation $\Psi_N = 0$ means *P* has order dividing *N*. Define F_N by removing form Ψ_N all factors coming from some Ψ_d with d|N.

$$Y_1(N)_{\mathbb{Z}[1/N]} := \operatorname{Spec}(R[1/N]/F_N)$$

Algebraic description of the modular curve $Y_1(N)$

- $R := \mathbb{Z}[b, c, \frac{1}{\Delta}]$
- E/R elliptic curve given by $Y^2 + cXY + bY = X^3 + bX^2$
- *P* := (0 : 0 : 1)
- Let $\Phi_N, \Psi_N, \Omega_N \in R$ be s.t. $(\Phi_N \Psi_N : \Omega_N : \Psi_N^3) = NP$

Define F_N by removing form Ψ_N all factors coming from some Ψ_d with d|N.

$$Y_1(N)_{\mathbb{Z}[1/N]} := \operatorname{Spec}(R[1/N]/F_N)$$

Let $N \ge 4$ and let K be a field with $char(K) \nmid N$ then

 $\psi : \{(E, P) \mid E/K, P \in E(K) \text{ of order } N\}/_{\sim} \xleftarrow{1:1} Y_1(N)(K)$ Let $(E, P) = (Z(y^2 - cxy - by - x^3 - bx^2), (0, 0))$ then $\psi(E, P) = (b, c)$

Relation between $Y_1(N)$ and S(d)

The 1-1 correspondence

$$\psi : \{(E, P) \mid E/K, P \in E(K) \text{ of order } N\}/_{\sim} \xleftarrow{1:1} Y_1(N)(K)$$

gives

$$S(d) := \{ p \text{ prime} \mid \exists K / \mathbb{Q} \colon [K : \mathbb{Q}] \le d, \exists E / K \colon E(K) [p] \neq 0 \} =$$

$$= \{ p \text{ prime} \mid \exists K / \mathbb{Q} \colon [K : \mathbb{Q}] \le d, \ Y_1(p)(K) \neq \emptyset \}$$

So we want to know whether $Y_1(p)$ has any points of degree $\leq d$ over \mathbb{Q} .

$X_1(N)$ and cusps

Let $N \ge 5$. Then $Y_1(N)$ can be embedded in a projective $\mathbb{Z}[1/N]$ -scheme $X_1(N)$. Let $K = \overline{K}$ and N prime. Then

 $\#(X_1(N)(K) \setminus Y_1(N)(K)) = N - 1.$

These N - 1 elements are called the cusps. Over \mathbb{Q} we have

 $\#(X_1(N)(\mathbb{Q})\backslash Y_1(N)(\mathbb{Q})) = (N-1)/2.$

i.e. only half of the cusps are defined over \mathbb{Q} .

A useful proposition of Michael Stoll

Proposition

Let C/\mathbb{Q} be a smooth proj. geom. irred. curve with Jacobian J, $d \ge 1$ and ℓ a prime of good reduction for C. Let $P \in C(\mathbb{Q})$ and $\iota : C^{(d)} \to J$ the canonical map normalized by $\iota(dP) = 0$. Suppose that:

- there is no non-constant $f \in \mathbb{Q}(C)$ of degree $\leq d$.
- **2** $J(\mathbb{Q})$ is finite.

Solution The intersection of *ι*(*C*^(d)(𝔽_ℓ)) ⊆ *J*(𝔽_ℓ) with the image of *J*(𝔇) under reduction mod *ℓ* is contained in the image of *C*^d(𝔽_ℓ).

Then $C(\mathbb{Q})$ is the set of points of degree $\leq d$ on C.

Motivation Low Modular Curves Upp Gonalities Sur

Lower bounds Upper bounds Summary

Definition of gonality

Definition

Let *K* be a field and C/K be a smooth proj. geom. irred. curve then the *K*-gonality of *C* is:

 $\operatorname{gon}_{K}(C) := \min_{f \in K(C) \setminus K} [K(C) : K(f)] = \min_{f \in K(C) \setminus K} \deg f$

Theorem (Abramovich)

Let N be a prime then: $gon_{\mathbb{C}}(X_1(N)) \ge \frac{7}{1600}(N^2 - 1).$ If Selberg's eigenvalue conjecture holds then: $gon_{\mathbb{C}}(X_1(N)) \ge \frac{1}{192}(N^2 - 1).$

So $\operatorname{gon}_{\mathbb{Q}}(X_1(41)) \ge \operatorname{gon}_{\mathbb{C}}(X_1(41)) \ge 7/1600(41^2 - 1) > 7$. But, even with the conjecture, this doesn't give a good enough bound for showing $\operatorname{gon}_{\mathbb{Q}}(X_1(29)), \operatorname{gon}_{\mathbb{Q}}(X_1(31)) > 6$

The \mathbb{F}_{ℓ} gonality is smaller than the \mathbb{Q} -gonality

Proposition

Let C/\mathbb{Q} be a smooth proj. geom. irred. curve and ℓ be a prime of good reduction of C then:

 $\operatorname{\mathsf{gon}}_{\mathbb{Q}}(\mathit{C}) \geq \operatorname{\mathsf{gon}}_{\mathbb{F}_\ell}(\mathit{C}_{\mathbb{F}_\ell})$

To use this we need to know how compute the \mathbb{F}_{ℓ} gonality of *C*. Let $\operatorname{div}_{d}^{+} C_{\mathbb{F}_{\ell}} \subseteq \operatorname{div}^{+} C_{\mathbb{F}_{\ell}}$ be the set of effective divisors of degree *d*. Then $\#(\operatorname{div}_{d}^{+} C_{\mathbb{F}_{\ell}}) < \infty$. The following algorithm computes the \mathbb{F}_{ℓ} -gonality:

Step 1 set d = 1

Step 2 While for all $D \in \operatorname{div}_d^+ C_{\mathbb{F}_\ell}$: dim $H^0(C, D) = 1$ set d = d + 1Step 3 Output d.

This is too slow to compute $gon_{\mathbb{F}_2}(X_1(29))$ and $gon_{\mathbb{F}_2}(X_1(31))$

Divisors dominating all functions of degree $\leq d$

 C/\mathbb{F}_l a smooth proj. geom. irr. curve. View $f \in \mathbb{F}_l(C)$ as a map $f \colon C \to \mathbb{P}^1_{\mathbb{F}_l}$. For $g \in \operatorname{Aut} C$, $h \in \operatorname{Aut} \mathbb{P}^1_{\mathbb{F}_l}$: deg $f = \deg h \circ f \circ g$

Definition

A set of divisors $S \subseteq \text{div } C$ dominates all functions of degree $\leq d$ if for all dominant $f \colon C \to \mathbb{P}^1_{\mathbb{F}_l}$ of degree $\leq d$ there are $D \in S, g \in \text{Aut } C$ and $h \in \text{Aut } \mathbb{P}^1_{\mathbb{F}_l}$ such that div $h \circ f \circ g \geq -D$

Proposition

If $S \subseteq \text{div } C$ dominates all functions of degree $\leq d$ then

$$\operatorname{gon}_{\mathbb{F}_{I}} C \geq \min(d+1, \inf_{\substack{D \in S, f \in H^{0}(C,D), \\ degf \neq 0}} \deg f).$$

Example: div_d⁺ C dominates all functions of degree $\leq d$.

A smaller set of divisors dominating functions of degree $\leq d$

Proposition

Define
$$n := \lceil \#C(\mathbb{F}_l)/(l+1) \rceil$$
 and $D := \sum_{p \in C(\mathbb{F}_l)} p$. Then

$$\operatorname{\mathsf{div}}_{d-n}^+ \mathit{C} + \mathit{D} := ig\{ \mathit{s}' + \mathit{D} \mid \mathit{s}' \in \operatorname{\mathsf{div}}_{d-n}^+ \mathit{C} ig\}$$

dominates all functions of degree $\leq d$.

Proof.

There is a $g \in \operatorname{Aut} \mathbb{P}^1_{\mathbb{F}_l}$ such that $g \circ f$ has poles at at least n distinct points in $C(\mathbb{F}_l)$. If f has degree $\leq d$ then there is an element $s \in \operatorname{div}_{d-n}^+ C$ such that div $g \circ f \geq -s - D$.

Motivation Lower bounds Modular Curves Upper bounds Gonalities Summary

An even smaller set of divisors dominating functions of degree $\leq d$

Proposition

If $S \subseteq \text{div } C$ dominates all functions of degree $\leq d$ and $S' \subseteq \text{div } C$ is such that for all $s \in S$ there are $s' \in S'$ and $g \in \text{Aut } C$ such that $g(s') \geq s$. Then S' also dominates all functions of degree $\leq d$.

This means that only 1 representative of each Aut *C* orbit of *S* is needed. This will be useful in the cases $C = X_1(p)$ with p = 29,31.

In these case we have an automorphism of *C* for each $d \in (\mathbb{Z}/p\mathbb{Z})^*/\{\pm 1\}$ given by $(E, P) \mapsto (E, dP)$. This gives 14 and 15 automorphisms respectively.

Lower bounds Upper bounds Summary

Modular units

Definition

Let *K* be a field, then an $f \in K(X_1(N))$ *K* is called a *K*-rational modular unit if div *f* consists entirely of cusps.

Let *C* be the set of all $Gal(\overline{\mathbb{Q}}/\mathbb{Q})$ orbits of cusps of $X_1(N)$. Let $M \subset \mathbb{Z}^C = (\mathbb{Z}^{cusps})^{Gal(\overline{\mathbb{Q}}/\mathbb{Q})} \subset \mathbb{Z}^{cusps}$ be the set of all principal cuspidal divisors that are rational. Then for each $m \in M$ there is a \mathbb{Q} -rational modular unit *f* such that $m = \operatorname{div} f$. **Idea:** If one can compute *M* then one has a lattice of divisors of functions. Finding short vectors in this lattice will hopefully give good upperbounds on the gonality.

The lattice of modular units using modular symbols

$$\psi: \mathbb{Z}_0^{cusps} \to H_1(X_1(N)(\mathbb{C}), cusps, \mathbb{Z})$$
$$c_1 - c_2 \mapsto \{c_1, c_2\}$$

$$\phi: H_1(X_1(N)(\mathbb{C}), cusps, \mathbb{Z}) \to \frac{\Omega^1(X_1(N)(\mathbb{C}))^{\vee}}{H_1(X_1(N)(\mathbb{C}), \mathbb{Z})} = J(X_1(N))(\mathbb{C})$$
$$\{c_1, c_2\} \mapsto \left(\omega \mapsto \int_{c_1}^{c_2} \omega\right)$$

im $\phi \subset \frac{H_1(X_1(N))\mathbb{C}),\mathbb{Q}}{H_1(X_1(N)(\mathbb{C}),\mathbb{Z})}$ and furthermore ϕ can be computed entirely using modular symbols. Since $M = (\ker \phi \circ \psi)^{Gal(\overline{\mathbb{Q}}/\mathbb{Q})}$ we can also compute M.

Motivation	Lower bou
Modular Curves	Upper bou
Gonalities	Summary

List of computed gonalities

The \mathbb{Q} -gonalities of $X_1(N)$ for $N \leq 40$ are:

Ν	1	2	3	4	5	6	7	8	9	10
gon	1	1	1	1	1	1	1	1	1	1
Ν	11	12	13	14	15	16	17	18	19	20
gon	2	1	2	2	2	2	4	2	5	3
Ν	21	22	23	24	25	26	27	28	29	30
gon	4	4	7	4	5	6	6	6	11	6
Ν	31	32	33	34	35	36	37	38	39	40
gon	12	8	10	10	12	8	18	12	14	12

Let *p* be the smallest prime s.t. $p \nmid N$. Then $\operatorname{gon}_{\mathbb{Q}} X_1(N) = \operatorname{gon}_{\mathbb{F}_p} X_1(N)$ for the above *N*.

For all $2 \le N \le 40$ there exists a modular unit *f* with deg $f = \operatorname{gon}_{\mathbb{Q}} X_1(N)$

The gonalities for $N \le 22$ and N = 24 were already known.