
Introduction
Modular Curves

Gonalities

Torsion points on elliptic curves and gonalities
of modular curves

with a focus on gonalities of modular curves.

Maarten Derickx

Mathematisch Instituut
Universiteit Leiden

Graduation talk
25-09-2012

Maarten Derickx ... and gonalities of modular curves.



Introduction
Modular Curves

Gonalities

Outline

1 Introduction

2 Modular Curves

3 Gonalities

Maarten Derickx ... and gonalities of modular curves.



Introduction
Modular Curves

Gonalities

What is known

S(d) := {p prime | ∃K/Q : [K : Q] ≤ d , ∃E/K : E(K ) [p] 6= 0}

Primes(n) := {p prime |p ≤ n}

S(d) is finite (Merel)
S(d) ⊆ Primes((3d/2 + 1)2) (Oesterlé)
S(1) = Primes(7) (Mazur)
S(2) = Primes(13) (Kamienny, Kenku, Momose)
S(3) = Primes(13) (Parent)
S(4) = Primes(17) (Kamienny, Stein, Stoll) to be
published.
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New results in my thesis

S(d) := {p prime | ∃K/Q : [K : Q] ≤ d , ∃E/K : E(K ) [p] 6= 0}

Primes(n) := {p prime |p ≤ n}

S(5) ⊆ Primes(19) ∪ {29,31,41}
S(6) ⊆ Primes(41) ∪ {73}
S(7) ⊆ Primes(43) ∪ {59,61,67,71,73,113,127}

This is in the "Torsion Points" part of my thesis. Today I will not
talk about this, but about how to show S(5) = Primes(19).
This joint work with Michael Stoll and will be published together
with the S(4) result.
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j-invariant

Over C the j-invariant gives a 1-1 correspondence:

j : {E/C}/∼ ←→ C

Now C ∼= H/SL2(Z) where SL2(Z) acts on H by:[
a b
c d

]
τ =

aτ + b
cτ + d

Analitic description E = C/(τZ + Z):

j(E) = τ mod SL2(Z)

Algebraic description E = Z (y2 − x3 − ax − b)

j(E) =
1728 · 4a3

4a3 + 27b2
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Analitic description of the modular curve Y1(N)

Γ1(N) :=

{[
a b
c d

]
∈ SL2(Z) |

[
a b
c d

]
≡
[
1 ∗
0 1

]
mod N

}

Y1(N)(C) := H/Γ1(N)

There is again a 1-1 correspondence:

ψ : {(E ,P) | E/C, P ∈ E of order N}/∼
1:1←→ Y1(N)(C)

Analitic description (E ,P) = (C/(τZ + Z),1/N mod τZ + Z)

ψ(E ,P) = τ mod SL2(Z)
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Algebraic description of the modular curve Y1(N)

Proposition

Let K be a field, E/K and P ∈ E(K ) of order N ≥ 4. Then there
are unique b, c ∈ K such that
E ∼= Z (Y 2 + cXY + bY − X 3 − bX 2) and P = (0,0)

R := Z[b, c, 1
∆ ] with

∆ := −b3(16b2 + (8c2 − 36c + 27)b + (c − 1)c3)
E/R elliptic curve given by Y 2 + cXY + bY = X 3 + bX 2

P := (0 : 0 : 1)
Let ΦN ,ΨN ,ΩN ∈ R be s.t. (ΦNΨN : ΩN : Ψ3

N) = NP
The equation ΨN = 0 means P has order dividing N. Define FN
by removing form ΨN all factors coming from some Ψd with d |N.

Y1(N)Z[1/N] := Spec(R[1/N]/FN)
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Algebraic description of the modular curve Y1(N)

R := Z[b, c, 1
∆ ]

E/R elliptic curve given by Y 2 + cXY + bY = X 3 + bX 2

P := (0 : 0 : 1)

Let ΦN ,ΨN ,ΩN ∈ R be s.t. (ΦNΨN : ΩN : Ψ3
N) = NP

Define FN by removing form ΨN all factors coming from some
Ψd with d |N.

Y1(N)Z[1/N] := Spec(R[1/N]/FN)

Let N ≥ 4 and let K be a field with char(K ) - N then

ψ : {(E ,P) | E/K , P ∈ E(K ) of order N}/∼
1:1←→ Y1(N)(K )

Let (E ,P) = (Z (y2 − cxy − by − x3 − bx2), (0,0)) then

ψ(E ,P) = (b, c)
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Relation between Y1(N) and S(d)

The 1-1 correspondence

ψ : {(E ,P) | E/K , P ∈ E(K ) of order N}/∼
1:1←→ Y1(N)(K )

gives

S(d) := {p prime | ∃K/Q : [K : Q] ≤ d , ∃E/K : E(K ) [p] 6= 0} =

= {p prime | ∃K/Q : [K : Q] ≤ d , Y1(p)(K ) 6= ∅}

So we want to know whether Y1(29),Y1(31) and Y1(41) contain
points of degree ≤ 5 over Q.
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X1(N) and cusps

Let N ≥ 5. Then Y1(N) can be embedded in a projective
Z[1/N]-scheme X1(N). Let K = K and N prime. Then

#(X1(N)(K )\Y1(N)(K )) = N − 1.

These N − 1 elements are called the cusps.
Over Q we have

#(X1(N)(Q)\Y1(N)(Q)) = (N − 1)/2.

i.e. only half of the cusps are defined over Q.
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A useful proposition of Michael Stoll

Proposition

Let C/Q be a smooth proj. geom. irred. curve with Jacobian J,
d ≥ 1 and ` a prime of good reduction for C. Let P ∈ C(Q) and
ι : C(d) → J the canonical map normalized by ι(dP) = 0.
Suppose that:

1 there is no non-constant f ∈ Q(C) of degree ≤ d.
2 J(Q) is finite.
3 ` > 2 or J(Q)[2] ↪→ J(F`).
4 C(Q) � C(F`)

5 The intersection of ι(C(d)(F`)) ⊆ J(F`) with the image of
J(Q) under reduction mod ` is contained in the image of
Cd (F`).

Then C(Q) is the set of points of degree ≤ d on C.
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Verifying the hypotheses

Mazurs result on S(1) implies that if p > 7 then the only rational
points on X1(p)(Q) are the rational cusps.
So if hypotheses 1− 5 are satisfied for X1(p) and d with p > 7
and some ` then p /∈ S(d).
Stoll has shown hypotheses 2− 5 are satisfied for ` = 2, d = 5
and C = X1(29),X1(31) or X1(41).
What remains for proving that S(5) = Primes(19) is:

For p = 29,31 and 41 there is no non constant
f ∈ Q(X1(p)) of degree ≤ 5.

For p = 41 this was already known. For p = 29,31 this is
proved in the "gonalities" part of my thesis.
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Definition of gonality

Definition
Let K be a field and C/K be a smooth proj. geom. irred. curve
then the K -gonality of C is:

gonK (C) := minf∈K (C)\K [K (C) : K (f )] = minf∈K (C)\K deg f

Theorem (Abramovich)
Let N be a prime then:

gonC(X1(N)) ≥ 7
1600(N2 − 1).

If Selberg’s eigenvalue conjecture holds then:
gonC(X1(N)) ≥ 1

192(N2 − 1).

So gonQ(X1(41)) ≥ gonC(X1(41)) ≥ 7/1600(412 − 1) > 7.
But, even with the conjecture, this doesn’t give a good enough
bound for gonQ(X1(29)) and gonQ(X1(31))
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The F` gonality is smaller than the Q-gonality

Proposition

Let C/Q be a smooth proj. geom. irred. curve and ` be a prime
of good reduction of C then:

gonQ(C) ≥ gonF`
(CF`

)

To use this we need to know how compute the F` gonality of
C.Let div+

d CF`
⊆ div+ CF`

be the set of effective divisors of
degree d . Then #(div+

d CF`
) <∞.The following algorithm

computes the F`-gonality:
Step 1 set d = 1
Step 2 While for all D ∈ div+

d CF`
: dim H0(C,D) = 1 set d = d + 1

Step 3 Output d.
This is too slow to compute gonF2

(X1(29)) and gonF2
(X1(31))
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Divisors dominating all functions of degree ≤ d

C/Fl a smooth proj. geom. irr. curve. View f ∈ Fl(C) as a map
f : C → P1

Fl
. For g ∈ Aut C, h ∈ AutP1

Fl
: deg f = deg h ◦ f ◦ g

Definition
A set of divisors S ⊆ div C dominates all functions of degree
≤ d if for all dominant f : C → P1

Fl
of degree ≤ d there are

D ∈ S, g ∈ Aut C and h ∈ AutP1
Fl

such that div h ◦ f ◦ g ≥ −D

Proposition
If S ⊆ div C dominates all functions of degree ≤ d then

gonFl
C ≥ min(d + 1, inf

D∈S, f∈H0(C,D),
degf 6=0

deg f ).

Example: div+
d C dominates all functions of degree ≤ d .
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A smaller set of divisors dominating functions of
degree ≤ d

Proposition

Define n := d#C(Fl)/(l + 1)e and D :=
∑

p∈C(Fl )
p. Then

div+
d−n C + D :=

{
s′ + D | s′ ∈ div+

d−n C
}

dominates all functions of degree ≤ d.

Proof.

There is a g ∈ AutP1
Fq

such that g ◦ f has poles at at least n
distinct points in C(Fq). If f has degree ≤ d then there is an
element s ∈ ÷+

d−nC such that div g ◦ f ≥ −s − D.
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An even smaller set of divisors dominating functions of
degree ≤ d

Proposition
If S ⊆ div C dominates all functions of degree ≤ d and
S′ ⊆ div C is such that for all s ∈ S there are s′ ∈ S′ and
g ∈ Aut C such that g(s′) ≥ s. Then S′ also dominates all
functions of degree ≤ d.

This means that only 1 representative of each Aut C orbit of S
is needed. This will be usefull in the cases C = X1(p) with
p = 29,31.
In these case we have an automorphism of C for each
d ∈ (Z/pZ)∗/ {±1} given by (E ,P) 7→ (E ,dP). This gives 14
and 15 automorphisms respectively.
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Computing the F2-gonality of X1(29) and X1(31)

Proposition

gonF2
(X1(29)) = 11 and gonF2

(X1(31)) = 12

Proof.
For a "smart" choice of S ⊂ div X1(p) dominating all function of
degree ≤ d with d = 10 (respectively 11) I computed:

gonFl
(X1(p)) ≥ min(d + 1, inf

D∈S,
f∈H0(X1(p),D),

degf 6=0

deg f ).

using Magma. This gives lower bounds 11 (resp. 12). During
this computation I found functions of deg 11 (resp. 12).
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The Q-gonality of X1(29) and X1(31)

Over Q there are known functions of degree 11 (respectively
13) on X1(29) (respectively X1(31)).

Corollary

gonQ(X1(29)) = 11 and gonQ(X1(31)) ∈ {12,13}

Actually ,gonQ(X1(31)) = 12 because recently Mark van Hoeij
found a function of degree 12 on X1(31) defined over Q.
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Summary

S(5) = Primes(19) (was ⊆ Primes(271))
S(6) ⊆ Primes(41) ∪ {73} (was ⊆ Primes(773))
S(7) ⊆ Primes(127) (was ⊆ Primes(2281))

Work in progress:
Using Michael Stoll’s ideas I am close to proving:

Primes(19) ∪ {37} ⊆ S(6) ⊆ Primes(19) ∪ {37,73}
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