Torsion points on elliptic curves and gonalities of modular curves with a focus on gonalities of modular curves.

Maarten Derickx

Mathematisch Instituut Universiteit Leiden

Graduation talk 25-09-2012

 $S(d) := \{p \text{ prime } | \exists K/\mathbb{Q} : [K : \mathbb{Q}] \le d, \exists E/K : E(K)[p] \ne 0\}$

Primes $(n) := \{p \text{ prime} \mid p \leq n\}$

- *S*(*d*) is finite (Merel)
- $S(d) \subseteq Primes((3^{d/2}+1)^2)$ (Oesterlé)
- $S(1) = Primes(7)$ (Mazur)
- *S*(2) = *Primes*(13) (Kamienny, Kenku, Momose)
- *S*(3) = *Primes*(13) (Parent)
- *S*(4) = *Primes*(17) (Kamienny, Stein, Stoll) to be published.

New results in my thesis

 $S(d) := \{p \text{ prime} \mid \exists K/\mathbb{Q} : [K : \mathbb{Q}] \le d, \exists E/K : E(K)[p] \ne 0\}$

Primes $(n) := \{p \text{ prime} \mid p \leq n\}$

- *S*(5) ⊆ *Primes*(19) ∪ {29, 31, 41}
- *S*(6) ⊆ *Primes*(41) ∪ {73}
- *S*(7) ⊆ *Primes*(43) ∪ {59, 61, 67, 71, 73, 113, 127}

This is in the "Torsion Points" part of my thesis. Today I will not talk about this, but about how to show $S(5) = Primes(19)$. This joint work with Michael Stoll and will be published together with the *S*(4) result.

j-invariant

Over C the *j*-invariant gives a 1-1 correspondence:

j : {*E*/C}/_∼ ←→ C

Now $\mathbb{C} \cong \mathbb{H}/SL_2(\mathbb{Z})$ where $SL_2(\mathbb{Z})$ acts on \mathbb{H} by:

$$
\begin{bmatrix} a & b \\ c & d \end{bmatrix} \tau = \frac{a\tau + b}{c\tau + d}
$$

Analitic description $E = \mathbb{C}/(\tau \mathbb{Z} + \mathbb{Z})$:

$$
j(E)=\tau\mod SL_2(\mathbb Z)
$$

Algebraic description $E = Z(y^2 - x^3 - ax - b)$

$$
j(E) = \frac{1728 \cdot 4a^3}{4a^3 + 27b^2}
$$

Analitic description of the modular curve $Y_1(N)$

$$
\Gamma_1(N):=\left\{\begin{bmatrix}a&b\\c&d\end{bmatrix}\in SL_2(\mathbb{Z})\mid\begin{bmatrix}a&b\\c&d\end{bmatrix}\equiv\begin{bmatrix}1&*\\0&1\end{bmatrix}\mod N\right\}
$$

*Y*₁(*N*)(*C*) := \mathbb{H}/Γ ₁(*N*)

There is again a 1-1 correspondence:

 $\psi: \{ (E, P) \mid E / \mathbb{C}, \, P \in E \text{ of order } \mathcal{N} \} /_{\sim} \overset{1:1}{\longleftrightarrow} Y_1(\mathcal{N})(\mathbb{C})$

Analitic description $(E, P) = (\mathbb{C}/(\tau \mathbb{Z} + \mathbb{Z}), 1/N \mod \tau \mathbb{Z} + \mathbb{Z})$

$$
\psi(E,P)=\tau\mod SL_2(\mathbb Z)
$$

Algebraic description of the modular curve *Y*1(*N*)

Proposition

Let K be a field, E/K and P \in *E(K) of order N* \geq 4*. Then there are unique b,* $c \in K$ *such that* $E \cong Z(Y^2 + cXY + bY - X^3 - bX^2)$ *and* $P = (0,0)$

\n- •
$$
R := \mathbb{Z}[b, c, \frac{1}{\Delta}]
$$
 with $\Delta := -b^3(16b^2 + (8c^2 - 36c + 27)b + (c - 1)c^3)$
\n- • E/R elliptic curve given by $Y^2 + cXY + bY = X^3 + bX^2$
\n- • $P := (0 : 0 : 1)$
\n

Let $\Phi_N, \Psi_N, \Omega_N \in \mathbb{R}$ be s.t. $(\Phi_N \Psi_N : \Omega_N : \Psi_N^3) = \mathbb{N}P$

The equation $\Psi_N = 0$ means P has order dividing N. Define F_N by removing form Ψ*^N* all factors coming from some Ψ*^d* with *d*|*N*.

$$
Y_1(N)_{\mathbb{Z}[1/N]} := \text{Spec}(R[1/N]/F_N)
$$

Algebraic description of the modular curve *Y*1(*N*)

- $R := \mathbb{Z}[b, c, \frac{1}{\wedge}]$
- E/R elliptic curve given by $Y^2 + cXY + bY = X^3 + bX^2$
- $P := (0:0:1)$
- Let Φ_N , Ψ_N , $\Omega_N \in \mathbb{R}$ be s.t. $(\Phi_N \Psi_N : \Omega_N : \Psi_N^3) = \mathbb{N}P$

Define *F^N* by removing form Ψ*^N* all factors coming from some Ψ*^d* with *d*|*N*.

$$
Y_1(N)_{\mathbb{Z}[1/N]}:=\text{Spec}(R[1/N]/F_N)
$$

Let $N > 4$ and let K be a field with char(K) $\nmid N$ then

 $\psi: \{ (E, P) \mid E/K, \, P \in E(K) \text{ of order } N \}/_{\sim} \overset{1:1}{\longleftrightarrow} Y_1(N)(K)$ Let $(E, P) = (Z(y^2 - cxy - by - x^3 - bx^2), (0, 0))$ then

$$
\psi(E,P)=(b,c)
$$

Relation between $Y_1(N)$ and $S(d)$

The 1-1 correspondence

$$
\psi: \{ (E, P) \mid E/K, P \in E(K) \text{ of order } N \}/_{\sim} \stackrel{\{1:1}{\longleftrightarrow} }{Y_1(N)(K)}
$$

gives

$$
S(d):=\{p\text{ prime}\mid \exists K/\mathbb{Q}\colon [K:\mathbb{Q}]\leq d,\,\exists E/K\colon E(K)\,[p]\neq 0\}=
$$

$$
= \{p \text{ prime } | \exists K/\mathbb{Q} \colon [K:\mathbb{Q}] \leq d, Y_1(p)(K) \neq \emptyset \}
$$

So we want to know whether $Y_1(29)$, $Y_1(31)$ and $Y_1(41)$ contain points of degree \leq 5 over \mathbb{O} .

$X_1(N)$ and cusps

Let $N > 5$. Then $Y_1(N)$ can be embedded in a projective $\mathbb{Z}[1/N]$ -scheme $X_1(N)$. Let $K = \overline{K}$ and N prime. Then

 $\#(X_1(N)(K) \setminus Y_1(N)(K)) = N - 1.$

These $N-1$ elements are called the cusps. Over Q we have

 $#(X_1(N)(\mathbb{O})) Y_1(N)(\mathbb{O})) = (N-1)/2.$

i.e. only half of the cusps are defined over Q.

A useful proposition of Michael Stoll

Proposition

Let C/Q *be a smooth proj. geom. irred. curve with Jacobian J, d* > 1 *and* ℓ *a prime of good reduction for C. Let* $P \in C(\mathbb{Q})$ *and* $\iota:C^{(d)}\to J$ the canonical map normalized by $\iota(dP)=0.$ *Suppose that:*

- **1** there is no non-constant $f \in \mathbb{O}(C)$ of degree $\leq d$.
- ² *J*(Q) *is finite.*

$$
\bullet \ \ell > 2 \text{ or } J(\mathbb{Q})[2] \hookrightarrow J(\mathbb{F}_{\ell}).
$$

 \bullet $C(\mathbb{Q}) \rightarrow C(\mathbb{F}_\ell)$

5 The intersection of $\iota(\bm{C^{(d)}(\mathbb{F}_\ell)}) \subseteq J(\mathbb{F}_\ell)$ with the image of $J(Q)$ *under reduction mod* ℓ *is contained in the image of* $C^d(\mathbb{F}_\ell)$.

Then $C(\mathbb{Q})$ *is the set of points of degree* $\leq d$ *on C.*

Verifying the hypotheses

Mazurs result on $S(1)$ implies that if $p > 7$ then the only rational points on $X_1(p)(\mathbb{O})$ are the rational cusps.

So if hypotheses 1 – 5 are satisfied for $X_1(p)$ and *d* with $p > 7$ and some ℓ then $p \notin S(d)$.

Stoll has shown hypotheses $2 - 5$ are satisfied for $\ell = 2$, $d = 5$ and $C = X_1(29)$, $X_1(31)$ or $X_1(41)$.

What remains for proving that $S(5) = Primes(19)$ is:

• For $p = 29, 31$ and 41 there is no non constant $f \in \mathbb{Q}(X_1(p))$ of degree ≤ 5 .

For $p = 41$ this was already known. For $p = 29, 31$ this is proved in the "gonalities" part of my thesis.

Definition of gonality

Definition

Let *K* be a field and *C*/*K* be a smooth proj. geom. irred. curve then the *K*-gonality of *C* is:

 $\mathsf{gon}_\mathcal{K}(C) := \mathsf{min}_{f \in \mathcal{K}(C) \setminus \mathcal{K}}[\mathcal{K}(C): \mathcal{K}(f)] = \mathsf{min}_{f \in \mathcal{K}(C) \setminus \mathcal{K}}$ deg *f*

Theorem (Abramovich)

Let N be a prime then: $\mathsf{gon}_{\mathbb{C}}(X_1(N)) \geq \frac{7}{1600}(N^2-1).$ *If Selberg's eigenvalue conjecture holds then:* gon_C($X_1(N)$) $\geq \frac{1}{192}(N^2-1)$.

 $\operatorname{\mathsf{So}}\operatorname{\mathsf{gon}}_\mathbb Q(X_1(41))\ge\operatorname{\mathsf{gon}}_\mathbb C(X_1(41))\ge 7/1600(41^2-1)>7.$ But, even with the conjecture, this doesn't give a good enough bound for gon_{Ω}(X_1 (29)) and gon Ω (X_1 (31))

The \mathbb{F}_{ℓ} gonality is smaller than the \mathbb{O} -gonality

Proposition

Let C/\mathbb{Q} be a smooth proj. geom. irred. curve and ℓ be a prime *of good reduction of C then:*

 $\mathsf{gon}_{\mathbb{Q}}(\mathcal{C}) \geq \mathsf{gon}_{\mathbb{F}_\ell}(\mathcal{C}_{\mathbb{F}_\ell})$

To use this we need to know how compute the \mathbb{F}_{ℓ} gonality of *C*.Let div $_d^+$ $C_{\mathbb{F}_\ell} \subseteq$ div⁺ $C_{\mathbb{F}_\ell}$ be the set of effective divisors of degree \vec{d} . Then $\#(\textsf{div}_{\vec{d}}^+ \, \bar{C}_{\mathbb{F}_\ell}) < \infty.$ The following algorithm computes the \mathbb{F}_{ℓ} -gonality:

Step 1 set $d = 1$

Step 2 While for all $D \in \text{div}_{d}^{+}$ $C_{\mathbb{F}_{\ell}}$: dim $H^{0}(C,D) =$ 1 set $d = d + 1$ Step 3 Output d.

This is too slow to compute gon $_{\mathbb{F}_2}(X_1(29))$ and gon $_{\mathbb{F}_2}(X_1(31))$

Divisors dominating all functions of degree ≤ *d*

 C/F_l a smooth proj. geom. irr. curve. View $f \in \mathbb{F}_l(C)$ as a map $f\colon\thinspace\boldsymbol{C}\to\mathbb{P}^1_{\mathbb{F}_I}.$ For $g\in$ Aut $\boldsymbol{C},\,h\in$ Aut $\mathbb{P}^1_{\mathbb{F}_I}.$ deg $f=$ deg $h\circ f\circ g$

Definition

A set of divisors *S* ⊆ div *C* dominates all functions of degree $0 \leq d$ if for all dominant $f \colon \mathcal{C} \to \mathbb{P}^1_{\mathbb{F}_I}$ of degree $\leq d$ there are $D \in \mathcal{S}, \, g \in$ Aut C and $h \in$ Aut $\mathbb{P}^1_{\mathbb{F}_I}$ such that div $h \circ f \circ g \geq -D$

Proposition

If S ⊆ div *C dominates all functions of degree* ≤ *d then*

$$
\textnormal{gon}_{\mathbb{F}_I} C \ge \textnormal{min}(d+1, \inf_{\substack{D \in S, f \in H^0(C, D), \\ \textnormal{deg} f \neq 0}} \textnormal{deg} f).
$$

Example: div $_d^+$ C dominates all functions of degree \leq d.

A smaller set of divisors dominating functions of degree ≤ *d*

Proposition

Define
$$
n := [\#C(\mathbb{F}_l)/(l+1)]
$$
 and $D := \sum_{p \in C(\mathbb{F}_l)} p$. Then

$$
\mathsf{div}^+_{d-n} \, C+D := \left\{s' + D \mid s' \in \mathsf{div}^+_{d-n} \, C \right\}
$$

dominates all functions of degree ≤ *d.*

Proof.

There is a $g\in$ Aut $\mathbb{P}^1_{\mathbb{F}_q}$ such that $g\circ f$ has poles at at least n distinct points in $C(\mathbb{F}_q)$. If *f* has degree $\leq d$ then there is an ϵ element $s \in \div_{d-n}^+ C$ such that div $g \circ f \geq -s - D.$

An even smaller set of divisors dominating functions of degree ≤ *d*

Proposition

If S ⊆ div *C dominates all functions of degree* ≤ *d and* $S' \subseteq$ div *C* is such that for all $s \in S$ there are $s' \in S'$ and g ∈ Aut *C such that g(s') ≥ s. Then S' also dominates all functions of degree* ≤ *d.*

This means that only 1 representative of each Aut *C* orbit of *S* is needed. This will be usefull in the cases $C = X_1(p)$ with $p = 29, 31.$

In these case we have an automorphism of *C* for each $d \in (\mathbb{Z}/p\mathbb{Z})^*/ \{ \pm 1 \}$ given by $(E, P) \mapsto (E, dP)$. This gives 14 and 15 automorphisms respectively.

Computing the \mathbb{F}_2 -gonality of $X_1(29)$ and $X_1(31)$

Proposition

$$
\text{gon}_{\mathbb{F}_2}(X_1(29)) = 11 \text{ and } \text{gon}_{\mathbb{F}_2}(X_1(31)) = 12
$$

Proof.

For a "smart" choice of $S \subset \text{div } X_1(p)$ dominating all function of degree $\leq d$ with $d = 10$ (respectively 11) I computed:

$$
\textnormal{gon}_{\mathbb{F}_I}(X_1(\rho)) \geq \textnormal{min}(d+1, \inf_{\substack{D \in S, \\ f \in H^0(X_1(\rho), D), \\ \textnormal{deg} f \neq 0}} \textnormal{deg } f).
$$

using Magma. This gives lower bounds 11 (resp. 12). During this computation I found functions of deg 11 (resp. 12).

The Q-gonality of $X_1(29)$ and $X_1(31)$

Over Q there are known functions of degree 11 (respectively 13) on $X_1(29)$ (respectively $X_1(31)$).

Corollary

$$
\text{gon}_{\mathbb{Q}}(X_1(29)) = 11 \text{ and } \text{gon}_{\mathbb{Q}}(X_1(31)) \in \{12, 13\}
$$

Actually ,gon_{Ω} $(X_1(31)) = 12$ because recently Mark van Hoeij found a function of degree 12 on $X_1(31)$ defined over $\mathbb Q$.

- *S*(5) = *Primes*(19) (was ⊆ *Primes*(271))
- *S*(6) ⊆ *Primes*(41) ∪ {73} (was ⊆ *Primes*(773))
- *S*(7) ⊆ *Primes*(127) (was ⊆ *Primes*(2281))

Work in progress:

Using Michael Stoll's ideas I am close to proving:

Primes(19) ∪ {37} ⊆ *S*(6) ⊆ *Primes*(19) ∪ {37, 73}

