Finding all points of degree < gonality on $Y_1(N)$

Maarten Derickx ¹ Mark van Hoeij ²

¹Algant (Leiden, Bordeaux and Milano)

²Florida State University

Harvard Number Theory Seminar 30-10-2013

Slides at: bit.ly/sporadic-points

Let $N, d \in \mathbb{N}$

Question

Does there exist a number field K with $[K : \mathbb{Q}] = d$ and an elliptic curve E/K such that E(K) contains a point of exact order N.

Definition/Notation

- $Y_1(N)/\mathbb{Z}[1/N]$ is the curve parametrizing pairs (E, P) of elliptic curves with a point of exact order N.
- $X_1(N)/\mathbb{Z}[1/N]$ is its projectivisation.

Question

Does the curve $Y_1(N)_{\mathbb{Q}}$ contain a point of degree d over \mathbb{Q} .

Up till now: fix d and find the answer for as many N as possible. This talk: fix N and find the answer for as many d as possible.

Outline

Introduction

New results

Outline

Introduction

New results

Mazur's torsion theorem (d=1)

Theorem (Mazur)

If E/\mathbb{Q} is an elliptic curve then $E(\mathbb{Q})_{tors}$ is isomorphic to one of the following groups:

- $\mathbb{Z}/N\mathbb{Z}$ for $1 \le N \le 10$ or N = 12
- $\mathbb{Z}/2N\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ for $1 \leq N \leq 4$

Uniform Boundedness Conjecture

Definition

A group G is an elliptic torsion group of degree d if $G \cong E(K)_{tors}$ for some elliptic curve E/K with $\mathbb{Q} \subseteq K$, $[K : \mathbb{Q}] = d$. The set of all isomorphism classes of such groups is denoted by $\phi(d)$.

Theorem (Uniform Boundedness Conjecture)

 $\phi(d)$ is finite for all d.

Definition

A prime p is a torsion prime of degree d if there exist an $G \in \phi(d)$ such that $p \mid \#G$.

The set of all torsion primes of degree $\leq d$ is denoted by S(d).

What is known about torsion primes

$$S(d) := \{ p \text{ prime } | \exists K/\mathbb{Q} \colon [K : \mathbb{Q}] \le d, \exists E/K \colon p \mid \#E(K)_{tors} \}$$
$$Primes(n) := \{ p \text{ prime } | p \le n \}$$

- $\phi(d)$ is finite $\Leftrightarrow S(d)$ is finite.
- S(d) is finite (Merel)
- $S(d) \subseteq Primes((3^{d/2} + 1)^2)$ (Oesterlé) not published
- S(1) = Primes(7) (Mazur)
- S(2) = Primes(13) (Kamienny, Kenku, Momose)
- *S*(3) = *Primes*(13) (Parent)
- S(4) = Primes(17) (Kamienny, Stein, Stoll) to be published.
- S(5) = Primes(19) (D., Kamienny, Stein, Stoll) to be published.
- $S(6) = Primes(23) \cup \{37\}$ idem.

Remark For $d \le 6$ and $p \in S(d)$, $p \ne 37$ there are ∞ many distinct (E, K) such that $E(K)[p] \ne 0$.

Some rational points related questions

Fix integers N, d > 0 then:

- **1** does $Y_1(N)$ have a place of degree d over \mathbb{Q} ?
- ② does it have ∞ many places of degree d over \mathbb{Q} ?
- if there are finitely many places of deg d, can we find them all?
- ullet if there are ∞ many places, can we parametrize them all?

Answers to 1,2 are known for $d \le 5$ and N prime (previous slide).

Goal of the 2nd half of this talk:

Answer question 1,2 and 3 for N small and all d.

Question 4 is also being worked on for some small N, d in a project by Barry Mazur, Sheldon Kamienny and me. (not the subject of this talk)

Q2: When has $Y_1(N) \infty$ many places of degree d

Let g be the genus of $X_1(N)$.

Then $j \in \mathbb{Q}(X_1(N))$ is a function of degree $[PSL_2(\mathbb{Z}) : \Gamma_1(N)] \ge \frac{3}{\pi^2}N^2$, hence $Y_1(N)$ has ∞ many places of degree d.

Theorem (Abramovich)

$$gon_{\mathbb{C}}(X_1(N)) \ge \frac{7}{800}[PSL_2(\mathbb{Z}) : \Gamma_1(N)] \qquad (\ge \frac{7}{800} \frac{3}{\pi^2} N^2)$$

Theorem (Frey, (quick corollary of Faltings))

Let C/\mathbb{Q} be a curve, if C contains ∞ many places of degree d then $d \geq \operatorname{gon}_{\mathbb{Q}}(C)/2$

Corollary

If $d < \frac{7}{1600} \frac{3}{\pi^2} N^2 \le \text{gon}_{\mathbb{C}}(X_1(N))/2 \le \text{gon}_{\mathbb{Q}}(X_1(N))/2$ then $X_1(N)$ contains only finitely many places of deg d.

M. v. Hoeij and I computed the exact \mathbb{Q} gonality for N < 40.

Q2: Two reasons for the existence of ∞ many places of degree d on $Y_1(N)$

Consider $u: X_1(N)^{(d)} \to \operatorname{Pic}^{(d)} X_1(N)$ and let $D \in X_1(N)^{(d)}(\mathbb{Q})$

- 1) if $r(D) := \dim |D| \ge 1$ then D occurs in a non constant infinite family of divisors of degree D ($|D| \cong \mathbb{P}^{r(D)}$).
- 2) if $W_d^0 := u(X_1(N)^{(d)}) \subseteq \operatorname{Pic}^{(d)} X_1(N)$ contains a translate of a rank > 0 abelian variety A s.t. $u(D) \in A(\mathbb{Q})$ then $u^{-1}A$ is a non constant infinite family of divisors of degree d that contains D.

Definition (Provisional/Just for this talk)

A place D of degree d of $Y_1(N)$ is called:

- **semi-sporadic** if *D* does not occur in a family as in 1)
- sporadic if D does not occur in a family as in 1) or 2)
- **very sporadic** if there are only finitely many places of degree *d*.

Question: Do there exist places of the above types?

Q1: When has $Y_1(N)$ a place of degree d?

Constructing places of low degree using CM

CM-construction

Let E/K be an elliptic curve with $\operatorname{End}_K E = \mathcal{O}_L$ and let $(p) = p_1 p_2 \subset \mathcal{O}_L$ a prime that splits and $P \in E[p_1](\bar{\mathbb{Q}}) \setminus \{0\}$. Then (E,P) gives a point on $Y_1(p)$ of degree $d \leq [K:\mathbb{Q}](p-1)$

Remark: This gives very sporadic points for p big enough since if $d < \frac{7}{1600} \frac{3}{\pi^2} p^2$ then there are only finitely many points of degree d.

Remark: The asymptotic behaviour of the biggest prime p such that there is a place of degree d is not known.

I.e.
$$d/2 + 1 \le p$$
 if p splits in $\mathbb{Z}[i]$ v.s. $p < (3^{d/2} + 1)^2$

Question: Do there exists non CM (very/semi) sporadic points?

 $Y_1(N)$ has only finitely many places of degree d if

$$d < \operatorname{gon}_{\mathbb{Q}} X_1(N)/2$$
, or $d < \operatorname{gon}_{\mathbb{Q}}$ and $\#J_1(N)(\mathbb{Q}) < \infty$.

so lets try to find all places of degree < gonality on $Y_1(N)$!

Remark: There is no reason why one couldn't have very sporadic points of degree > gonality.

Outline

Introduction

New results

Finding all points on degree < gonality on $Y_1(N)$

Two reasons why this rational point problem is easy for many small N

Proposition

Let $N \le 55$, $N \ne 37, 43, 53$ then the rank of $J_1(N)(\mathbb{Q})$ is 0.

Definition

Let $\operatorname{Cl}^{csp} X_1(N) \subset \operatorname{Pic} X_1(N)(\bar{\mathbb{Q}})$ be the subgroup generated by the cusps, $\operatorname{Cl}^{csp}_{\mathbb{Q}} X_1(N) := \operatorname{Cl}^{csp} X_1(N) \cap \operatorname{Pic} X_1(N)(\mathbb{Q})_{tors}$ and $\operatorname{Cl}^{csp,d}_{\mathbb{Q}} X_1(N)$ its degree d part.

Proposition

Let
$$N \leq 55$$
. If $N \neq 24, 32, 33, 40, 48, 54$ then $\mathrm{Cl}_{\mathbb{Q}}^{csp,0} X_1(N) = J_1(N)(\mathbb{Q})_{tors}.$ If $N = 24, 32, 33, 40, 48$ respectively 54 then $[J_1(N)(\mathbb{Q})_{tors}: \mathrm{Cl}_{\mathbb{Q}}^{csp,0} X_1(N)]$ is a divisor of $2, 2, 2, 4, 16$ respectively 3 .

Determining the rank 0 cases.

Proposition

Let $N \le 55$, $N \ne 37, 43, 53$ then the rank of $J_1(N)(\mathbb{Q})$ is 0.

Proof.

 $L(J_1(N),1)/\Omega\in\mathbb{Q}$ is non-zero for these N (using Magma's L-ratio computation capabilities). And then use a generalization of a theorem of Kolyvagin and Logachev due to Kato, which states that isogeny factors of $J_1(N)$ have algebraic rank zero if they have analytic rank zero.

Determining the torsion

What was already known

Conjecture (Conrad, Edixhoven, Stein)

Let N be a prime then

$$ext{Cl}_{\mathbb{Q}}^{ ext{csp},0}\,X_1(N)=J_1(N)(\mathbb{Q})_{ ext{tors}}$$

Theorem (Ohta)

Let N be a prime then the index of $\operatorname{Cl}_{\mathbb{Q}}^{csp,0} X_1(N)$ in $J_1(N)(\mathbb{Q})_{tors}$ is a power of 2.

Remark In fact Conrad, Edixhoven and Stein conjectured and Ohta proved a stronger statement. Namely they proved the statement for the subgroup of $\operatorname{Cl}_{\mathbb{Q}}^{csp,0}X_1(N)$ generated by the cusps in $X_1(N)(\mathbb{Q})$.

Question

Does $Cl_{\mathbb{Q}}^{csp,0} X_1(N) = J_1(N)(\mathbb{Q})_{tors}$ generalize to composite levels?

Determining the torsion

Proposition

Let $q \nmid 2N$ be a prime then $T_q - q\langle q \rangle - 1$ kills every element in $J_1(N)(\mathbb{Q})_{tors}$.

Proof.

Since $q \neq 2$ we have $J_1(N)(\mathbb{Q})_{tors} \hookrightarrow J_1(N)(\mathbb{F}_q)$. So it suffices to prove the statement for $J_1(N)(\mathbb{F}_q)$.

On $J_1(N)(\mathbb{F}_q)$ on has $1 = \operatorname{Frob}_q$ and $q = \operatorname{Ver}_q$. So the statement follows from $T_q - \text{Ver}\langle q \rangle - \text{Frob} = 0$ (Eichler-Shimura).

Determining the torsion

Proposition

Let
$$N \leq 55$$
. If $N \neq 24, 32, 33, 40, 48, 54$ then $\text{Cl}_{\mathbb{Q}}^{csp,0} \, X_1(N) = J_1(N)(\mathbb{Q})_{\textit{tors}}.$

Proof.

$$J_1(N)(\mathbb{C}) \cong \Omega^1(X_1(N)(\mathbb{C}))^{\vee}/H_1(X_1(N)(\mathbb{C}),\mathbb{Z}), \text{ and}$$

$$J_1(N)(\bar{\mathbb{Q}})_{tors} \cong H_1(X_1(N)(\mathbb{C}), \mathbb{Q})/H_1(X_1(N)(\mathbb{C}), \mathbb{Z})$$

this allows one to explicitly compute $T_q - q\langle q \rangle - 1$ on $J_1(N)(\bar{\mathbb{Q}})_{tors}$ in terms of modular symbols using Sage.

Let $M' \subseteq J_1(N)(\bar{\mathbb{Q}})_{tors}$ be the intersection of the kernel of $T_q - q\langle q \rangle - 1$ for several small q, and $M \subseteq M'$ the subgroup invariant under complex conjugation.

We verified using Sage that $M \subseteq Cl^{csp,0} X_1(N)$ for the above N, so:

$$J_1(N)(\mathbb{Q})_{\textit{tors}} \subseteq \textit{M}^{\mathsf{Gal}\,\mathbb{Q}} \subseteq \mathsf{Cl}^{\textit{csp},0}_{\mathbb{Q}}\,\textit{X}_1(\textit{N}) \subseteq J_1(\textit{N})(\mathbb{Q})_{\textit{tors}}$$

A finite problem

Proposition

```
Let N \le 55, N \ne 37, 43, 53 then the rank of J_1(N)(\mathbb{Q}) is 0.
Let N \le 55, N \ne 24, 32, 33, 40, 48, 54 then \text{Cl}_{\mathbb{Q}}^{csp,0} X_1(N) = J_1(N)(\mathbb{Q})_{tors}.
```

So for $N \le 55$, $N \ne 24,32,33,37,40,43,48,53,54$ finding all places of degree d (more general finding all g_d^r 's since places are g_d^0 's) is a finite problem, "just" compute the inverse of $X_1(N)^{(d)}(\mathbb{Q}) \to \operatorname{Pic}^d X_1(N)(\mathbb{Q})$.

Algorithm solving this finite problem

```
for D in \operatorname{Pic}^d X_1(N)(\mathbb{Q}) = \operatorname{Cl}^{\operatorname{csp},d}_{\mathbb{Q}} X_1(N) do: write D = \sum n_i C_i with C_i cusps an n_i \in \mathbb{Z}. compute H := H^0(X_1(N), \mathcal{O}(\sum n_i C_i)) if \dim H = 0 then D is not linearly equivalent to a D' \geq 0. else |D| = \mathbb{P}(H) is a g^r_d with r = \dim H - 1
```

Finite but huge

$$\#J_1(39)(\mathbb{Q}) = 705125427552 \approx 7 \cdot 10^{11}, \qquad \text{genus} = 33$$
 $\#J_1(41)(\mathbb{Q}) \approx 1.1 \cdot 10^{17}, \qquad \text{genus} = 51$ $\#J_1(55)(\mathbb{Q}) \approx 2.5 \cdot 10^{22}, \qquad \text{genus} = 81$

Computing 7 · 10¹¹ H^0 's over $\mathbb Q$ on a genus 33 curve takes too long¹. **Solution** If $\#J_1(N)(\mathbb Q)<\infty$ and $p\neq 2$ then ρ_2 is injective:

$$X_{1}(N)^{(d)}(\mathbb{Q}) \xrightarrow{u_{\mathbb{Q}}} \operatorname{Pic}^{d} X_{1}(N)(\mathbb{Q})$$

$$\downarrow^{\rho_{1}} \qquad \qquad \downarrow^{\rho_{2}}$$

$$X_{1}(N)^{(d)}(\mathbb{F}_{p}) \xrightarrow{u_{\mathbb{F}_{p}}} \operatorname{Pic}^{d} X_{1}(N)(\mathbb{F}_{p})$$

So we have to compute $u_{\mathbb{F}_p}$ exactly $\#X_1(N)^{(d)}(\mathbb{F}_p)$ times. And only $\# \operatorname{im} u_{\mathbb{F}_p} \cap \operatorname{im} \rho_2 \quad (\approx \#X_1(N)^{(d)})(\mathbb{Q}))$ times ρ_2^{-1} and an H^0 over \mathbb{Q}^2 .

¹i.e. using one of the world's super computers for more than a month.

²even less because if $d < \text{gon}_{\mathbb{Q}} X_1(N)$ we can ignore those known to be in $\rho_2 \circ u_{\mathbb{Q}}$ and im $u_{\mathbb{Q}}$, e.g. sums of $\text{Gal}(\mathbb{Q})$ -orbits of cusps.

How to compute ρ_2^- 1

$$ho_2:\operatorname{Pic}^dX_1(N)(\mathbb{Q}) o\operatorname{Pic}^dX_1(N)(\mathbb{F}_p)$$

If $\operatorname{Cl}_{\mathbb{Q}}^{csp} X_1(N) = J_1(N)(\mathbb{Q})$ then ρ_2^{-1} can be computed by writing $x \in \operatorname{Pic}^d X_1(N)(\mathbb{F}_p)$ as a sum of cusps, and lifting this sum of cusps.

$$X_{1}(N)^{(d)}(\mathbb{Q}) \xrightarrow{u_{\mathbb{Q}}} \operatorname{Pic}^{d} X_{1}(N)(\mathbb{Q})$$

$$\downarrow^{\rho_{1}} \qquad \qquad \downarrow^{\rho_{2}}$$

$$X_{1}(N)^{(d)}(\mathbb{F}_{p}) \xrightarrow{u_{\mathbb{F}_{p}}} \operatorname{Pic}^{d} X_{1}(N)(\mathbb{F}_{p})$$

If $\operatorname{Cl}^{csp}_{\mathbb Q} X_1(N) \neq J_1(N)(\mathbb Q)$ we might still find all sporadic points of degree d if im $u_{\mathbb F_p} \cap \operatorname{im} \rho_2 \subseteq \rho_2(\operatorname{Cl}^{csp,d}_{\mathbb Q} X_1(N))$.

If $[J_1(N)(\mathbb{Q}): \mathrm{Cl}^{csp}_{\mathbb{Q}} X_1(N)] \mid d$ then im $u_{\mathbb{F}_p} \cap \mathrm{im} \, \rho_2 \subseteq \rho_2(\mathrm{Cl}^{csp,d}_{\mathbb{Q}} X_1(N))$ every $P \in \mathrm{im} \, u_{\mathbb{F}_p}$ with $dP \in \rho_2(\mathrm{Cl}^{csp,d}_{\mathbb{Q}} X_1(N))$ is in $\rho_2(\mathrm{Cl}^{csp,d}_{\mathbb{Q}} X_1(N))$.

Final remarks:

- The majority of the very sporadic points found have a non integral *j*-invariant and hence are non-*CM*.
- The places of degree < 13 on $X_1(37)$ cannot be written as sums of cusps.
- $\operatorname{gon}_{\mathbb{Q}}(X_1(25)) = 5$ but there are no functions of degree 6 or 7 in $\mathbb{Q}(X_1(25))$. Since $\#J_1(25)(\mathbb{Q}) < \infty$ there are only finitely many points of degree 6 and 7, so the points of degree 6 and 7 are very sporadic but of degree > gonality.
- The elliptic curve 37a1 is the only $A \subset J_1(37)$ of positive rank. The lowest degree of an $f: X_1(37) \to 37a1$ is $36 < 40 = g(X_1(37))$ so $f^*(37a1) \subseteq W^0_{36}X_1(37)$. Let d be the smallest integer such that $37a1 \cong E \subseteq W^0_dX_1(37)$ then $E \not\subseteq W^1_dX_1(37)$ hence $\exists L \in E(\mathbb{Q})$ such that dim $H^0(X_1(37), L) = 1$. So L is a semi-sporadic point that is not sporadic. Is $d < \operatorname{gon}_{\mathbb{Q}} X_1(37) = 18$?
- Is there an N such that X₁(N) contains ∞ many places of degree
 gonality? The degree 130 map from X₁(131) to a rank > 0 elliptic curve probably gives rise to an example, but it's hard prove this.

Thank you!

The list of explicit sporadic points can be found at:

www.math.fsu.edu/~hoeij/files/X1N/LowDegreePlaces